(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 6.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 70978, 1393] NotebookOptionsPosition[ 69060, 1328] NotebookOutlinePosition[ 69542, 1346] CellTagsIndexPosition[ 69499, 1343] WindowFrame->Normal ContainsDynamic->False*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Multiplying Signals Convolves Their Spectra", "Title", CellChangeTimes->{{3.3983110635530653`*^9, 3.398311092134163*^9}, 3.398312543761501*^9}], Cell["Gareth Loy", "Subsubtitle", CellChangeTimes->{{3.398311111682272*^9, 3.398311113464835*^9}, 3.398312543761501*^9}], Cell[TextData[{ "In ", StyleBox["Musimathics", FontSlant->"Italic"], " V2 section 4.4.2 shows two proofs that multiplying signals convolves their \ spectra. Step 2 of that process, beginning on page 170, does not really \ provide enough information for the reader, and furthermore, Figure 4.13 has \ some misleading information. This document corrects the mistakes and fills \ in the missing information. " }], "Text", CellChangeTimes->{{3.398311142797013*^9, 3.3983112085215197`*^9}, { 3.3983112643918576`*^9, 3.3983114276666355`*^9}, 3.398312543761501*^9}], Cell[TextData[{ "The definition of ", StyleBox["f", FontSlant->"Italic"], " and ", StyleBox["g", FontSlant->"Italic"], " shown below, printed in ", StyleBox["Musimathics", FontSlant->"Italic"], " V2 p. 171 Fig. 4.13, are very poorly trucated versions of sinusoids at 1 \ Hz and 3 Hz.\nHere's what was printed in the book:" }], "Text", CellChangeTimes->{{3.397799765433922*^9, 3.3977998425448017`*^9}, { 3.3978006211944447`*^9, 3.39780065332064*^9}, {3.3983110197901373`*^9, 3.398311032939045*^9}, {3.3983114386324034`*^9, 3.3983114392633104`*^9}, 3.398312543761501*^9}], Cell[BoxData[{ RowBox[{ RowBox[{"f", " ", "=", " ", RowBox[{"{", RowBox[{ "0", ",", " ", "0.3", ",", " ", ".6", ",", " ", ".9", ",", " ", "1", ",", " ", ".9", ",", " ", ".8", ",", " ", ".6", ",", " ", ".18", ",", " ", RowBox[{"-", ".18"}], ",", " ", RowBox[{"-", ".6"}], ",", " ", RowBox[{"-", ".8"}], ",", " ", RowBox[{"-", ".9"}], ",", " ", RowBox[{"-", "1"}], ",", " ", RowBox[{"-", ".9"}], ",", " ", RowBox[{"-", ".6"}], ",", " ", RowBox[{"-", ".3"}]}], "}"}]}], ";"}], "\n", RowBox[{ RowBox[{"g", " ", "=", " ", RowBox[{"{", RowBox[{"0", ",", " ", ".9", ",", " ", ".8", ",", " ", RowBox[{"-", ".18"}], ",", " ", RowBox[{"-", ".9"}], ",", " ", RowBox[{"-", ".6"}], ",", " ", ".3", ",", " ", "1", ",", " ", ".6", ",", " ", RowBox[{"-", ".6"}], ",", " ", RowBox[{"-", "1"}], ",", " ", RowBox[{"-", ".3"}], ",", " ", ".6", ",", " ", ".9", ",", " ", ".18", ",", " ", RowBox[{"-", ".8"}], ",", " ", RowBox[{"-", ".9"}]}], "}"}]}], ";"}]}], "Input", CellChangeTimes->{{3.3977975997598352`*^9, 3.397797731138749*^9}, { 3.397797933760104*^9, 3.3977979361936035`*^9}, {3.3978005002405214`*^9, 3.3978005626502624`*^9}, 3.397800612582061*^9, 3.398312543761501*^9}], Cell[TextData[{ "Here is how ", StyleBox["f", FontSlant->"Italic"], " and ", StyleBox["g", FontSlant->"Italic"], " were originally generated:" }], "Text", CellChangeTimes->{{3.397800676123429*^9, 3.3978006970435104`*^9}, { 3.3978007288392305`*^9, 3.397800754195691*^9}, 3.398312543761501*^9}], Cell[BoxData[{ RowBox[{ RowBox[{"f1", " ", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{"Sin", "[", RowBox[{"2", " ", "\[Pi]", " ", RowBox[{"n", "/", "17"}]}], "]"}], ",", " ", RowBox[{"{", RowBox[{"n", ",", " ", "0", ",", " ", "16"}], "}"}]}], "]"}]}], ";"}], "\n", RowBox[{ RowBox[{"g1", " ", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{"Sin", "[", RowBox[{"6", " ", "\[Pi]", " ", RowBox[{"n", "/", "17"}]}], "]"}], ",", " ", RowBox[{"{", RowBox[{"n", ",", " ", "0", ",", " ", "16"}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.397797769874448*^9, 3.397797838723448*^9}, { 3.3977979728062496`*^9, 3.3977980079067216`*^9}, {3.3977980667413216`*^9, 3.3977981016415057`*^9}, 3.3977996464428205`*^9, {3.3978007435103264`*^9, 3.3978007439409456`*^9}, 3.398312543771515*^9}], Cell["\<\ Here is what should have been printed in the book for these functions:\ \>", "Text", CellChangeTimes->{{3.397800676123429*^9, 3.3978007236617856`*^9}, { 3.397800759323064*^9, 3.397800763028392*^9}, 3.398312543771515*^9}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"N", "[", RowBox[{"f1", ",", " ", "2"}], "]"}], "\n", RowBox[{"N", "[", RowBox[{"g1", ",", " ", "2"}], "]"}]}], "Input", CellChangeTimes->{{3.397798108100794*^9, 3.397798118075136*^9}, { 3.397800770519163*^9, 3.397800770719451*^9}, 3.398312543771515*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "0.8951632913550623218`2.", ",", "0.7980172272802394991`2.0000000000000004", ",", RowBox[{"-", "0.1837495178165703308`2.000000000000001"}], ",", RowBox[{"-", "0.9618256431728190703`2.000000000000001"}], ",", RowBox[{"-", "0.6736956436465572094`2.0000000000000004"}], ",", "0.3612416661871529473`2.000000000000001", ",", "0.9957341762950345219`1.9999999999999991", ",", "0.5264321628773558006`1.9999999999999991", ",", RowBox[{"-", "0.5264321628773558006`1.9999999999999991"}], ",", RowBox[{"-", "0.9957341762950345219`1.9999999999999991"}], ",", RowBox[{"-", "0.3612416661871529473`2.000000000000001"}], ",", "0.6736956436465572094`2.0000000000000004", ",", "0.9618256431728190703`2.000000000000001", ",", "0.1837495178165703308`2.000000000000001", ",", RowBox[{"-", "0.7980172272802394991`2.0000000000000004"}], ",", RowBox[{"-", "0.8951632913550623218`2."}]}], "}"}]], "Output", GeneratedCell->False, CellAutoOverwrite->False, CellChangeTimes->{3.3977981185157695`*^9, 3.397800771841064*^9, 3.398312543771515*^9, 3.398312913993869*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "0.3612416661871529473`2.000000000000001", ",", "0.6736956436465572094`2.0000000000000004", ",", "0.8951632913550623218`2.", ",", "0.9957341762950345219`1.9999999999999991", ",", "0.9618256431728190703`2.000000000000001", ",", "0.7980172272802395028`2.0000000000000004", ",", "0.5264321628773558006`1.9999999999999991", ",", "0.1837495178165703308`2.000000000000001", ",", RowBox[{"-", "0.1837495178165703308`2.000000000000001"}], ",", RowBox[{"-", "0.5264321628773558006`1.9999999999999991"}], ",", RowBox[{"-", "0.7980172272802394991`2.0000000000000004"}], ",", RowBox[{"-", "0.9618256431728190703`2.000000000000001"}], ",", RowBox[{"-", "0.9957341762950345219`1.9999999999999991"}], ",", RowBox[{"-", "0.8951632913550623218`2."}], ",", RowBox[{"-", "0.6736956436465572094`2.0000000000000004"}], ",", RowBox[{"-", "0.3612416661871529473`2.000000000000001"}]}], "}"}]], "Output", GeneratedCell->False, CellAutoOverwrite->False, CellChangeTimes->{3.3977981185157695`*^9, 3.397800771841064*^9, 3.398312543771515*^9, 3.3983129138536673`*^9}] }, Open ]], Cell["\<\ But even these corrected functions are still inappropriate for what I was \ trying to show because they don't have enough precision.\ \>", "Text", CellChangeTimes->{{3.397799765433922*^9, 3.3977998425448017`*^9}, { 3.3977998732088947`*^9, 3.3977998845552096`*^9}, {3.397799952713216*^9, 3.397800009264533*^9}, {3.39780082306472*^9, 3.397800827140581*^9}, { 3.3983114739131346`*^9, 3.3983115147518578`*^9}, {3.398311554649227*^9, 3.3983116026482463`*^9}, {3.3983118458479505`*^9, 3.398311887057206*^9}, { 3.398311934335189*^9, 3.398312154251413*^9}, 3.398312543771515*^9}], Cell[TextData[{ StyleBox["Mathematica", FontSlant->"Italic"], " carries functions ", StyleBox["f", FontSlant->"Italic"], " and ", StyleBox["g", FontSlant->"Italic"], " with much more precision than two decimal digits, so we can use ", StyleBox["Mathematica", FontSlant->"Italic"], " to perform the calculations shown in Figure 4.13 to demonstrate that it is \ fundamentally correct." }], "Text", CellChangeTimes->{{3.397799765433922*^9, 3.3977998425448017`*^9}, { 3.3977998732088947`*^9, 3.3977998845552096`*^9}, {3.397799952713216*^9, 3.397800009264533*^9}, {3.39780082306472*^9, 3.397800827140581*^9}, { 3.3983114739131346`*^9, 3.3983115147518578`*^9}, {3.398311554649227*^9, 3.3983116026482463`*^9}, {3.3983118458479505`*^9, 3.398311887057206*^9}, { 3.398311934335189*^9, 3.398312087885984*^9}, {3.3983121765835247`*^9, 3.398312224832904*^9}, {3.3983122670836573`*^9, 3.398312268966365*^9}, 3.398312543771515*^9}], Cell[TextData[{ "We form the product of ", StyleBox["f", FontSlant->"Italic"], " and ", StyleBox["g", FontSlant->"Italic"], " :" }], "Text", CellChangeTimes->{{3.397800869511507*^9, 3.3978008756703634`*^9}, 3.3983122773684464`*^9, 3.398312543771515*^9}], Cell[BoxData[ RowBox[{ RowBox[{"h", " ", "=", " ", RowBox[{"f1", " ", "g1"}]}], ";"}]], "Input", CellChangeTimes->{{3.39779841243841*^9, 3.397798428932126*^9}, 3.397799668774933*^9, 3.398312543771515*^9}], Cell[TextData[{ "Here are the values that should have been shown for ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"f", "(", "n", ")"}], RowBox[{ RowBox[{"g", "(", "n", ")"}], " ", "."}]}], TraditionalForm]]] }], "Text", CellChangeTimes->{{3.398311746685362*^9, 3.398311799771696*^9}, 3.398312543771515*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{"h", ",", " ", "2"}], "]"}]], "Input", CellChangeTimes->{{3.397798436432912*^9, 3.397798439256973*^9}, 3.398312543771515*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "0.3233702788786785589`1.9999999999999991", ",", "0.5376207295736018821`2.000000000000001", ",", RowBox[{"-", "0.1644858231535867621`1.9999999999999991"}], ",", RowBox[{"-", "0.9577226645441287907`2.0000000000000004"}], ",", RowBox[{"-", "0.6479777457530762071`1.9999999999999991"}], ",", "0.2882770728287656416`1.9999999999999991", ",", "0.5241864960778973287`2.000000000000001", ",", "0.096731656091848344`2.0000000000000004", ",", "0.096731656091848344`2.0000000000000004", ",", "0.5241864960778973287`2.000000000000001", ",", "0.2882770728287656416`1.9999999999999991", ",", RowBox[{"-", "0.6479777457530762071`1.9999999999999991"}], ",", RowBox[{"-", "0.9577226645441287907`2.0000000000000004"}], ",", RowBox[{"-", "0.1644858231535867621`1.9999999999999991"}], ",", "0.5376207295736018821`2.000000000000001", ",", "0.3233702788786785589`1.9999999999999991"}], "}"}]], "Output", GeneratedCell->False, CellAutoOverwrite->False, CellChangeTimes->{3.3977984397276497`*^9, 3.398312543771515*^9, 3.398312929526203*^9}] }, Open ]], Cell[TextData[{ "Finally, take the Fourier transform of ", StyleBox["h", FontSlant->"Italic"], " and put it in rotated order (so that 0 Hz is in the center, negative \ frequencies are to the left of 0, positive frequencies are to the right)." }], "Text", CellChangeTimes->{{3.397801071301667*^9, 3.3978010774805517`*^9}, { 3.3983123063100624`*^9, 3.3983123564121056`*^9}, 3.398312543771515*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Chop", "[", RowBox[{"RotateRight", "[", RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"Fourier", "[", "h", "]"}], "/", RowBox[{"Sqrt", "[", "17", "]"}]}], "]"}], ",", " ", "8"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.39779931648837*^9, 3.397799330188069*^9}, { 3.397799370496029*^9, 3.3977994373321342`*^9}, {3.3977996029803247`*^9, 3.397799609249339*^9}, 3.398312543771515*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "0", ",", "0", ",", "0", ",", "0.25`", ",", "0", ",", "0.25`", ",", "0", ",", "0", ",", "0", ",", "0.25`", ",", "0", ",", "0.25`", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]], "Output", GeneratedCell->False, CellAutoOverwrite->False, CellChangeTimes->{{3.397799312863157*^9, 3.3977993316101136`*^9}, { 3.3977993756434307`*^9, 3.3977994395052595`*^9}, 3.3977996123337746`*^9, 3.398312543771515*^9, 3.3983129362558804`*^9}] }, Open ]], Cell[TextData[{ "These values are exactly the ones shown for ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["H", "2"], "(", "k", ")"}], TraditionalForm]]], " in Figure 3.14, so the calculation is correct, but only if you use full \ precision, not the truncated precision shown in the book. " }], "Text", CellChangeTimes->{{3.39831239572864*^9, 3.3983125714613314`*^9}}], Cell[CellGroupData[{ Cell["Generating the Graphical Functions", "Section", CellChangeTimes->{{3.3983125775601006`*^9, 3.398312585421405*^9}}], Cell["Here's the graphical functions shown in Figure 4.13.", "Text", CellChangeTimes->{{3.39831239572864*^9, 3.3983125714613314`*^9}, { 3.398312949875464*^9, 3.3983129551730814`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Sin", "[", RowBox[{"2", " ", "\[Pi]", " ", "x"}], "]"}], ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", "0", ",", " ", "1"}], "}"}], ",", " ", RowBox[{"AspectRatio", " ", "->", " ", ".25"}]}], "]"}]], "Input", CellChangeTimes->{{3.397798172633587*^9, 3.397798178121478*^9}, { 3.397798316360256*^9, 3.397798371639744*^9}, {3.3977997029741087`*^9, 3.397799707760992*^9}, {3.3978009108409357`*^9, 3.3978009212859554`*^9}, { 3.397800960282029*^9, 3.3978009606225185`*^9}, {3.3983116496958976`*^9, 3.398311709021203*^9}, 3.3983125437815294`*^9}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwV2Xc81d8bAHBEQyIzs0iKCg1RGo+QnVFI5SshGYVQaSqlJCKkgURLdrKS HHtzr52ssu5w7z1khKTf+f3l9f7jc91znnGe87kKTt5HzvBwcXFlc3Nx/f+v yRl6SynD5sBMCX/z0K7bB3j1pH0GpDTgWV7XpGz0KdiZ+Cz+k5Q+XHiSq98e 5Q2mTV05CVLWcOtD2dXkqEA45vL7a5SUC6y9/arxaFQE9Knf1wuX8getQ6us bR4nwitxi3uhUndBE81/vRKeBbeXf9r0QCoGdot/0Je7icDueFLW+MQbCC7+ eoj/EBVW/rttb7g2CwouV2gUd3eBkhWHXvEwF5TT1lKMWP1wuXkPPJv6DMOj 3cerlg/Bmlzhfm5uBArLUrlNhEchf1CvkbKvHP741exKm6VDp9HtiXDDcvC9 VKi4awkDZjJLJMyOlEP2rVVyhasYoHVtz+nas+XQ5qix8cN6BhSKqs+URpWD PkPioJYZAz7rS8vn0MvB+WyyGPdLBhS/G/eLiakAi+6ui1r7mFDukSBznFUJ 6RL05qdOY/CJ4enpMFMJX/6dXPfZYwzeuGl/ceaqghiX6KY23zEIdu064SVW BUWml/ZOB42BkZPwizv7qkDTPHQjPXkMKMeDJTPDqiDHWelh2M8x6DU6L75E tRqkY63Plx9nQVPN3jPLtarhXRlP3crTLCgx4M9bdbAaDvd+NzB3Y0Gi/ntr SZtq8G9bklxyiQVOOj+jVW9UQ2SO71uzaBbQtWxE7JqqoUFf0FG2gQXTG/cL ZZyvgfs2aObmLjYcGNStCQ2oAb8ZxVC/fWy4l2AU6HanBq6u39Z4So8NEmLW WPF5DaglOVqvs2KDJrcn5UVlDWglPz6gfY4NAT3PIkJkaqF09/WmvldsWIiY EnKpqwURT2128xIO6JvO1xxsr4VTw105eSs4ELaU69a6gVoIdSlgRQtxQO7G yvHvU7XAPPk4X1OGAwc81lOt5OvgeO5Df/EdHAjUt4yEy3UwWOGzTdOBAzxz aatllOrBPch9YC6LAzJNupOgXg8DObLOV3M5oJHU3eGypx4uazUZTxZy4Izx srjMw/XwKL5wb3MZB2qfOynpXqqHH4aK0cptHIjQltJ2r6mHFX9bFLymOJAi mC37qKUe5F6cs/af5UDpoMG/nJ56qCxU6fZd4MCvUP/KBVwP4bCmw44Xg20P xTxSsgEg8vq1WlEMstfvORe4N4BWWnzmru0YdlnKGfT6NcCPhk+RpRoYzDfk KnPfbIA73PN5ersxBDb+ZJtENcBn6vPqHYBhUHZ/QH9RA3CH7qd/MsPw4etk GJ9AI2CWpP9BVwzlj0O9N0s0Qt3F9g2W7hi+n1E4YiHfCOyy/JXHzmEQELRY 81yjEcb5JgIO+2LwcUhN2vpfIzxXzCnuvYFB859j/tHMRjip7m16NxqD2eHS oEOFjfDLOHnLilgMznHrLLTKG8GYxRV87xmGSK1+mnRnI3BEh155JGBgeJ+U GvzbCNO3hM5/e4eBq6RopG1ZExztd12q8AGDhIB0TpVwE6xa/p+YUxoG3ZRv Jh+UmqAnmDusKQtD/A+b6z6Hm6DGJKrHuBBDjlqekdOxJlCL1V5pW4Sh9rqY uPXpJijhcks7UYxhWrItQ+tiE7RGnd17uJTsn5XlwGJ8E7hoTYV11WDgLjfR DWc1wa51S2JudWCQXJ0qGDjTBFvctGNFuzCoOazo8eFqhoJoOZ7EbxhOzNf4 WYs1Q/ZVH/HEHgy5Ow69ldnXDKUq5+T1f2Kov/XmwiqDZnh7W8r1xSCGH81L DvyzaIZtTz6JMIYwrPIs7xx0bgZWiU+i9ygG19ewPPVhM+Rq1t5UGMNwfeJl e9yTZrjTfX9Sm4UhGhZfhSc2g8Q4vdGMjaG0p3jPhU/NkKMbln4cY+hUkV3q /LUZ5M9Z5ViPY2BdvtZqXdMM2sNfZYwmMEiJaXvu7mmG7vB3kpKTGLY5Pdfa PNIM42q5aVPEBtmzS2RxM0z9fZhUN4XB16wg/h8PBZrnqLn2MxhCXki4TwhQ YKV0f4v0bwyJ9Iu7hiQoIGExbdlC3HhXo7l6MwWsOp74b5rDoC3UwPN4FwXC eH9athOnPD+tdVKHAn0pXRoB8yS+G2Y9lUwp8LjWVF70D4Y7mY9eYRsKqHOE Rd8Sj+9W6vjsSIF7ytyr1BYwOFR8WXHXkwJ5/JOrMom1v9F9JW9T4G+K1Ybo v+TznQLfDz6kgLnCzT2zxBJs8d70WAosfN5qY72I4e7l9NWXkyhwLF7v8nvi CW69QwfTKaB5KS1xgtghrPvKygIK/Lti0bzjH1mPhE9mRxkFMhzklngSayct HUpspEDbKb4DL4hTtiSs8eiiwNv98zdLiSXyd5ppDFLg976Jqj7iuzr1txZZ FNDbNCjyi/hXvWNe7W8KpJrUnPlLnJ36x9+YmwpTVxJK/hHTsEFE5lIqPBFw kZsjXrsr6oOoABXS+mWDGMTWV/sqAoSpsGDZyKISP0TK/X0SVJgxuvJfFnE5 r/+sriwVsraptt8lnjVGIikKVBiYmbS0IlaP4FddtYlYsLdNjNi13cbQdysV XvvM2FPI+hOkkk53bafC52e2rFvE7Q6sa/u0qHAgRCRIhXjlG63YpH1U6K3U XVtH9leXEZS9VJcK5XY8ZaeIr6g113saUuFlq5cHm8Qn209qhGpGhYhDKdK+ xLRCl3+7jlBB0bilhU3iu3YxSyruGBVM5wQjHYlt9P7s5PqPCmYzITb1JD/C QgzMzzhR4auL+/otxHMifUHq56ng/1WkrWWW5K+dckKML1l/8L6CNcSuCX4F c5epoHP90Wtrko/tm/hZFUFUCDwZ8uTTNPk++7Rs7J5RQTXJa4TvF/k+t4O8 vyaQ/f3tJMxL6mNtTdOD9a+p4JhzzXCO1FOYlUsJK4MKWMOorZbUm5vr4023 K6jQbCrju0An+Z/We3C0lgryy/HvHBqpv/FN9qbNVFDbfzfUkdSz/rWSSPFu KvBYX+h6Rep9XeTY3AcOFSxibGXy+zCUnA78kDNJBeZ5X3WdXpJ/O0WPf5ml QkL09Wvl30l/69QubORpgY+PW4uzSP+RlAu9hCVa4MRpdby1BUMBR27jrEwL rLY90RRAIedH6ccOLoUW2BQbNVrchOGJc7eGyJYWYD/ob1CtxyCSqjypAS0w dkHLK6ccw8drxcn79VvgYqrI9lLSDy0PWx4xMG6BppfRO6pLMESMX/547GgL fJ+6NFlE+qmAVo331bMtwDdRctUwBwNf5RkWimiBgvkz4uxEDG+ezMXVxrQA 9WYmVyDp7/pnw01bnrdAI/+enSviMATx56UOvm6BMtcbPkvJ+bBoyevOV9gC 9eMC/715SPK1L3nE5EcLvJwpf+R1EcPY74H+jm2tUBUisPegHob8sxHlJpqt kC9zUSmGnG+3ug68Q3tb4eWhbZL9e0n9FSSc/2DQSubJIelj5HzUvXRy4bp9 K/Te/fipbwOGF1OdUhtCWuHDg99qB8h5azTRZO070Ao3Y4dyrIs5IHr6xm7a cCvszw5mhBZwoJ+6Vdae2Qplx+5aFOZwwD/74dCh6VZYyq+YNZvCgURvY1+p lW3wKfzQsNATDsywKyNKNdvAPe20+3NPDrxhfqkXfNQGiG/wuqIIB7yeWih6 RLdB6G2jNQ4CHNDSH7pW9awNCt6rOEUu5UB9Ar/q9ddtcHaoTqh3ng0Tlscj GIVtoKLOOys0ROargpmjlUNtMDE46T32kQ3dd7b3XdnTDskBv4VvGLNBUO49 Hh5uBxuxH0p+jizQsb3TN8RoB/vs+BQ1Mv/5RpxqGOS0g2Pqi+NDVizo5JZ8 /2O2HdbJnT68W48FL0dDHHoFOmD1uVcZkUosUMv2aGrT6ICc1nuDC/QxOKyn llZ+twMudnFxUcl8Guae5/pqQyfU3A853nSCCUydjJCVmzuBMlAxqmDFBEPJ t6mX1Dvh6Fwwt7chE3hqYjhm2p3Q9ecF89dOJlzZ4H9pzqITagvPfEsSYILr wI57R651gn+JQczLYgYctMl+y9vaCYFRBiGb1pD5Wydt2C2wC6y0JoflCmjg v6MyV6LiG3DNLKP4DAzDQGblwxaF79B45IzKHa+f8MejPU7lag/YUQ1jdt7s gS0Hly26fumF9FGzpFq1djBMVjj7cU0/lK68ouzbXgOX5U6t/2k/AL86BFwX ubJhK8tmZdfhH7C71WFtVlgmEhUaX145/wMcxOT3vb1ci3hRXJZi/E94tSln g8FIG/LU+NK9wnQQzOoTP2h870Fpxk6vSmYG4fOVbXkVsT/R9Jj06tHYIbCM fG1n/2UY5R01XBKjPwxHwoWHNtbRUIhpYbCs4TC4J1YU1bXRkL2eyvK3xsPA xEczXPtpiGfnylX55sQLEd8eTdKQuQhF4pvdMNhHmS0+laMjOtV2s+z5YdDf 7KT70IeOpM1drd48GSZ90aVrSJiBAo2CE3NHh0Glzjao7SATtTq42W9jDINt /pIXX0yYaMNFU6n0sWE43O96IeEoE9UnCUe/Hh+Gop5+W/MzTCT2J+Fe1Pww xIy1lLmEMFFKRv55H8ERiDOPNHBqYiKqCH3vVs0RCD29QH18ZAytV2mYfb97 BEweiI9knBhDFyEzT3HvCDyP3RdQ4TSGpM/5q8vojMDcRz6xHt8x5FLFpchv MgLvaKKsL1FjaPayFD/9vxFgUYou67aMIYU+k2+vg0fA9NBBWVtjFgot35tl EzIChV97KPusWOjX+633lj0cgWVCQrHkYoXKfQU1PCNHQMPW16rMjYVclrdG 7IgbgTsFSw0z7rNQys7jhmXZI1DhGG3KV8lCaqFn8/t7RsB9eZjCe002ivW2 C4/sH4Gus62CYfvZ6J+1sYvuzxFwVA5tdNNnI+q6LSLvRkfgCPPVxxVH2OhC Huf8+YkR6KZuZ9PPsVHuj4tKC0tHQVM++b5MEhtpa92NkdoxCr8VzT7qL+Gg TicpzQSNUThWHDP5ZTkH+T3K7JLXGoXwx/LDWwQ5KH3km7TyvlHoGsivn5bk oLUxqkmaBqMg+FjjwXY1DuKZ6Mw4emIUfqouTzc8xkENqSo14UGj0JMoxBp5 zUFunSVuwsGjoJNtEOKTwkG8PNb8T+6PQq5/R9pkOgcdOH7zcHzYKJSMPLk7 lMdB2cva2lJjR2HvalMH9xoOinG5/qMmdRT4cuuqBBgcZL+WMsfdNgoOyU6n 0jZiJCjlm/elYxRM67YtjdqMUZmo+IWL30bBh8VT6q2G0cYVJ+n0vlGIHjN0 W62JEZ4c7aTQR4HlN31uVB+joLrFTwmLoxDjbmY/7IiRRmWS9zFuGqj9lsjd 64IRrUR/izAvDSxopwVDz2JklhuafHcFDaRnPlav9MJIPFHisacYDaZMT2x9 fRWjFH81rz2baeTeAHwKURid8G5RmdxKA/xUXIoeg9EqD/+RdHUanPx7TeHd U4x8TxXZy++iwYtPnQLLEjDaa2JgukyHBiph7rvt32PE0WcsLdOlwdugIz3f P2D0CsLKrx6iwcFrDecs0zHi3dW6h2NCA7/Ol3byHzFqXueg3GFDg51++TpH izC6Jc09/MiOBo/CZvUfFGO0U/xNotFJsj6+CzvySzB6xs+UKHakwbbsB9VT 5Rg5TV/ke+1JA68VYeW8DRhN14cP+tymwQGZyYfe3Rj1ruxwW7hDAwOBOMvZ 7xiVm8ni+/dooDPdI3+lF6PI5tQ/Lx/S4LJZ6qDTAEabW2vEmp6Q9bz1+9k5 jNFqUaE4u2c0mFhCnV03itHvo7YKwy9o4Ky7IHmahlFlx7Dqn0QafH0e7NvA wMihm9tQJZXsJxIN0uFgpC9t3JSbToPxvc+7jDFGW05GHtXJooFY05udpuMY zfaudTyWS4P3UhaLu35h1C/nOjqYT4MAA79z6yYxqnLIOOf1mdhD+QfXFEZR P/ZeCS6hwSsX1660aYwCFO78W11GA9v4uycuzmB0yqk+OL6CBhceOQxq/sZo 67Bd1KdaGqy1uvcvaRYjEaVXktBAA9GLV2JM5zCaO0N7Wd9EA+N5X1U2cTXt YtrPVhq4fe32kPyDUbry1+3nO0i+HFwQTCaOductnO2igXheRL7iAkZXU00P 3P1OA+98v9MJxI5jUZVCfTTQHH4gJPQXI4Ot303iBmgAPXmlAcSq5xVaNg7S gFerz/87sVim27GcYRqkPKZt0VjEaJ6T1befRoPFOyUjwcQ/1H871zFoEP32 cDKZt1GNzwGmNYsG6WFBp4X/YZT5MdjnB4cGR5vNFE2JY341znhO0MByMYF2 nfjaTrEbvydpoJ3lnvmO2Mn/5JI7MzQ470tOI2KjvOQHgnM0WPPNSG+QWH2G IfTiD8lH78PCU8QSWttjlRZpEFmV+ZPcP9DC5QDZj1x0aD7rkUvuH2ioECXv W0IHx5+BD8j9A9XPLVWp5aNDWPG44xhxtrZ51tHldDgXVKrdQfz02pNdA/x0 YBdNSRQQ3yzu/eKxig51rJjpSGKXv4q6M0Lk+YTUTidikwOetbdF6BBudbBo K/H2wBzzVeJ0YD10fcUh+yFZOtf+bA0doppVHqQQL3IdPLlBmg4bX8T7nyAe PhjyM0uWDqu9Wp14iRuCKGf3rqODT+2Po+/I/j/jdfA/soF8Pg/tQCuJ36Lz ml0tG+ng4cSV4EDsUkGdtlChQ2dV8eEhEv9tQXqXD6vR4V9L7PuOeYxify5o NW6jg8HOaUs94gWd/FmTnXRYtyLg8AeST7X/lK8a7aZDQM0tHQeSf2qnBrVr tOlwRMlWK4PkZ0xJ3J9D++lwapBze4rkr+MNwRt6unRY8V5O9BzJ79/zk4EH zOiwPOfr5n8TGNmfyND5ak6HY9c5lauJyz+7cu+zosN0X0CuNKmnRwHdQXts 6ZB2LSRmDam/jTMlwRqOdPDPv34qj9RnmE2AwScnOlRzbNMe0DH6lbt92Y4z dIgvijW3JfVc4vcmRN2DPD/vHf+N1L/txIOHm/3pkBEs6HCb9IdiSz2zD5fo wBwOPy/Zj9H67AUB5St0eBgw1fme9BOOl/cjpZt00P71vTCL9J9glvVj+RA6 5DJUK5zbMGKaCh5JDKXDSMN82tcWjCzTakTWhtPhJve7CSEqRrIe2jEyUXQw at71JKERo1zauqcS8XSQcJgx+q8KI2nD7mNPXtIh+6LLhqsVpF++i5IUS6KD paWcY0QZ6fdn+F4IvyPPWxjNJ38l8R9kxgtk00Fx5Fu1Vx5Gov15yTyVdHgs HbH9+WuyXwI3bhRU08mcmF+wPAkj/r36dufqyH6DvoX3S4x4nrWu6mymQyDr Xp7Cc7JfVjjgQzcddjq0+ck8wohapWxhiemw3krN3fkS+f9TWIXvFx1Umk44 6/uR+K8v4C2aosMJ6vdrsj4YocBDRYrzJB4P3FbmuJP63eOk9JuXAZfGzEp8 7Ul8MuL+JEgzYNUSbiNTHYyW9zp1HpFjQId569OX+zC6y7/54zJ5BlR3nRFn 7Cb1fbbQ9YISA+Yzl7503o6Rh0JHi/42BgTukF+CFUh9PxFMGTvEgH7WKTFH boz4bty23nOBAXVNoVGfPnNQ7gRrDvkxoOhj6m0dcp67uNolGlxigPN5vqGq bA6qtFBnHr3GgPqbHVxF7zno7vq+QK9gBgzdUKs1fELmg9rdaa+fM+B1lum9 eS8yX4iOcwuWM+Bzuo1SlSwH5dw/+T6mkgG7G9cmO63hIKeFajOZGgaUi8wW zApzUPlIwlPlRgZERG3LFVzGQUGFpqp6nQyIf3lRbHCcjbgd3tsFMBnQV6uU sqmCjbg+OGQNijChl/ZCarcTG1WzurwSxZnQ2fxJ3eUkG4Vts1Kzl2RC6nhr /X1rNlpTqJfRIccE3jbRZ3kGbKRWo5xWq8wE6p3C6rTNbGQ/8utd5gEmXOa1 2s87wUKfFe6/vOrBBEqhuI3/ZRbyfZEVLlLOBLNT7J0UzzFUsPDifnklE/yM r25f4zyGFhzu3fatYcLY3M9Hx8i8el/xv4utjUzoUOfxKzMaQ/Hp/P9FdTGh fY2OkrbSGKoqObNVhM0EmPJyKOtlIskhmQZhyTEIpZ78vduAib5uCVku7DUG Fc6VCk5LGEjYxHdrkCALzhziN2k6NYp6ValtV4pZMFWs6lGsMISyX8KGYQc2 ePgWVVU8HUD/ZWkKyy2yQaHAuqgm+hu6FZx0uzeVA5z+bzXyj6gogy4XJ2iG Ie6SfYpcfBmyEhbcXTOPodEleE/8WR8Uyscj00vsblbhtqjkgyrnpv+OE29X H1Itq/VGmoN9FdJ/MAjbnv5hXO6FpD9lWHgRr85wUj2Zdw4NWh8+K76A4Q6H 1/tGnBvyfxYW6/wXA65VaCo964gywm5dIecgDFR1ja+oO4VGb/nbhxO7O9sc iip3QHbu9usLiCParejJefZov/bWTP5FDFYHd0hWxtmhpb0NVR///97pUora UjdLBFSUUk0svkjtkq0wRwGVnx72EBdnmFqq5pshZnqcFd8/DM69RXvN441Q 8w3PPjvimj+HuCLddNAy31Ol54k9Lcp6dQr2IR3Xo6+DiAuzRQtOJ+xGOeZ7 3dP//95sl+LZ1+7b0JiuulkZsZhkx9WQRGW0QUtRvZO44XWVUr2nPHLYskaE nHtwnkcvcY3PavR03crp/7+nm1QP///vXSX/A7C2kMw= "]]}}, AspectRatio->0.25, Axes->True, AxesOrigin->{0, 0}, PlotRange->{{0, 1}, {-0.9999998592131705, 0.9999998782112116}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{3.3983128400775824`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Sin", "[", RowBox[{"6", " ", "\[Pi]", " ", "x"}], "]"}], ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", "0", ",", " ", "1"}], "}"}], ",", " ", RowBox[{"AspectRatio", " ", "->", " ", ".25"}]}], "]"}]], "Input", CellChangeTimes->{{3.397798172633587*^9, 3.397798178121478*^9}, { 3.397798316360256*^9, 3.3977983886542096`*^9}, 3.3977997170343266`*^9, { 3.3978009688343267`*^9, 3.3978009821835213`*^9}, {3.3983117190856752`*^9, 3.3983117224705424`*^9}, 3.398312543791544*^9, 3.398312857102062*^9}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwVm3k0lV8XxyWVECUJqUwVJZI0KHaGkLkQmUKoXyVCGSJSShmaVEQhNAiZ Zx0h83DN3Gu8hnu5w6mEDPE+71/WZz3Ps4ez9z7nfNe6JJ3cz7pwcnBwPFnN wfH/v/ou9LaKSQv19u0b87tIsepcWmIeQ6KH4PwVn3XGmT6gnBATnyuqDVKa Obc4Mh+CQXNPzltRc8iQ42TcyXgNls5z5c9FnUH6Yox0x5ePMKD4UCtS1BuG txuMnEkthMQtJg8ei94H92QH0evhtXCXO3fPI9FoyMuyXnkh0wN7dZ+F5XhE g4NU7IOD93ugPdR9klIbDRLTpvejR3tAZrX8F4VbL8H6yvsNCUm9UPMvRaGz /RU8yVRMyRUjA9/0K5WdEbFwKEbNbR3HAMQM+GvlL7+DrgDLkht6I6Ahfj5l 0CIBsqxSFZ95jcCU9ZE13BkJsDpQv+jeuxHYwfS7mLE/Eba6dZ4enh4B9/8O 7+LoTwSJSS2vq/FUEHT++in16HuQXs6LuTo2Clbnk77+/JUCPmKPDx83mgBM Med5L5YKJ0v67e65T8ADe24XM61UaO9/tjf22QTkXnQXK4hOBfqFlyHyXRPA f10t9PaRD9A9IMGYPE+DHyF91msDP4J7lf2GoPN0sF0TmV+Y+hH2pKik3/Gl w++HJzf+1/IRhi7uuaD7mg4SkR9/NO78BBaG/qyDnXQIeH3zwLPKT/AjCR+/ ajAJB9M3rRXnToOKAS20W3EK6hV+ODQfSIOXiNc0Rn8KHLJ9S++cT4OfCR2D LS5TEFkw5DGSlgY887Gcj+OmgF6RQflg9AVuWeR2KXEx4F3X6WylF+mQyiO3 KNTAABWrf7yjpenAscv8V8kIA5rIWa7RY+lgo1NqJjXPgPmhreJzKhnA3ZQZ fmgPE8ynxh+U9WYA1VJR3jGYCbwrd211d3yF8M1HZLJ2syDmP0t7eZ2voHaR 7D59jAUynfIOm65/hYexQV/nDFmg/rnnIqX8K0Tv0Lik6cmC4s+v8gsVskCh P9Guv5gFHBfuHk7TzALOibdTUo0s0BG6Vhh/LgtEQq4elOtnQccdjeK7d7Kg o1PcwfsfC1hmzDKDliz4O9l0ZpUaGw6t71FTp2YBP9ftVg1DNvh/+/7twGwW WP9z/3XShg3r5F5XbNmRDTso5kn+vmyQXNaoHnLLhk8LvPq9X9lwOVf+VPvd bIiPFA3iKWdD5uWtNdUvs8Fmh5TLQj0bjncwaz+XZ0PY1KYuwVE2WHx63ei1 IQcij5taSwtiiLcLMXSVzAH8R0nu5HYMVEG3ZiuVHOBrutcnKovBPVCzVc0u B/ybLt9drYah4OB+0wM3cuCX2JDBZl0MS7StbVKhOVBxMOLtkCmGR2dZ7esy coBc9zQk4yIG0rpes4WKHHBvsGRlXsMgXF7ZyezMAe/pQ1HXbmJI3hPT3baU A5x7rfaIP8BQvqRJjjPMBfMEu0b9FAxcOfttohxy4VXs79l9XzDoXxLpD/bO hYDNbW112Rh62lgDLvG58OwH21blG4YdD3vtrbJyQeyPw2+uagzOJ6qG9Ktz obkuZNXTegy/PsSMKDJz4eXraLveDgxHbe85SXHkwfVN56Jf9mK4s+n6qJBQ HnQ4XBHhH8BQXWPlvE42Dzxeyg9rjGDgDdAanz+eB0/WRFAPjGM4q6TgyjTJ gw+OfFspdAwxEyK0wYt5kFzz4+ZJJobBuNWX23zyYKnFec4BY9h1hk2vCs+D gPd7X574jUEsSFf1UlIe/LVd0OOewbAxIzGcpzAPXC3sB0PmMKyhzPdnNOWB zjdek/R5DAvcZgpnqHlQVRn68v4ihp+H04P+zOVBQvT2DN5/GMad17S93pAP Ir6/n2ksYyA/t5c6Lp0PZc2/Tu5eIepRUeg1eDQfToj1FBYT/IO98cdd43yQ 5ZOfWSS4RPyK8C7nfPgYpPeXSXCWftWlOr98kAk++z2C4FRf8eKrT/JhUlf9 DIWw/+bDTR6B1HwoUGv53Ev4f9rZYpNTkg8GP58331/CEMopm2FByocRAQYa WsDgf+Du8t/xfEhyWR06+ZfoL3uySfxiPnDXd0u+nyXqFaGcBJsKQGuzQvz6 PxisSyJ+U3cXwN2NiQs7f2EwoY9rPThRAMfdn2mPszBoC8NLubMFcC3jUMj5 KQyq2jETTZcK4Mfqx2UBExhkEvUfbX5RANtmTUxIRD1FW5LJBZ8KQKmtupyj DwP/0tI+628FUM7zx3yY6Id5y68tiZMFYLDH9mBGHQZ2KLeE9koB0Ac4X76p xDCW63iDJlQIvGfh/JEyDC0CQkIKJwvBUlFSLygTQ5Wam0ubRSEI3ol9ufcj hqKrNQXeVwth0z/Dx6EJRL/X+p4vfVUI5/hIhfpPiH6ZaUuzTy+EkQ3tovlE /0dJ71taVVkIH4u9brYGYvANGninxyqE+tECb6GrGNwyDv9kcBbB2u5RXXDE 4ER5ovFEpAiiR2q8xCwxGB3RHOvSIp7P+ahRNTBI4Q9yF98Ugcg5ibiSzRi2 bue4vTarCPr7+ZWursPAZ3C+6fOPInhILVzdvMCGuQ+87j9/FoHYrR3DKcNs aLL3yAvULYbtXSJ7Pn9ig0/LMYj5Uww6ewfXyuxlA79C/ng9dwnw/z7YKCHG hpTIAxGL4iXQ536Kk7KeDW2Ge/rsT5VAoMeO82F0FuxrFPLa9aoEeI6sL294 z4KhWvwh50gpbOsz7t7Iy4Jbe64ajRmUQlxTOHV2lgl8DyemtziUwuLBk+Px VCYc0xk46RdWCg0cr0PkipnworqBDH2l0Pj1zj79i0zQ/Z7K3+xfBlpXl706 vjBgUEIyfzmqDMgqa5VaXzDAOzje5kByGfirFM9E3mZAErz49KKxDFZd2e1m oc+AxfJgTWvxcqDKRAoKjk/B1xKbW7TycojXPDHgJTAFW/M2Da5ahUB8r/TO u8eI8zJi0XxMGMERuYjErK10eO883lgjj6D90e4XSTM0kN9SXBxuheChqYlC fRYNNG85vNyShWA2UHnjMRkaHI63/BCtWAFtM1W7mCvj4Gj/we7TYAVQiyw6 tSJHoYCq1dR6ohKKvs+36e7vh269u78idSth6UGYy4l2CsxmfhM2PFsJ0gYS VoxbFDhy+5hj3aVK8CoH1m1EhqLNirMVzyvhbOIhjrtGfVCsLSaRQ68ENcaG 3RN23VD24adXdHQVbDyuW/vyHAkqr7zddp5ZDWtsc7aOTWTCzG41gQy3Wvji bhUn4t6B1KmatY99a8HnO2/xc1IHevBWL+jyvVoQXGUlRlbqRMJC5lg6thZQ 4WRV03QnOrzqauub6lpwji56uftmN/KlxDwJ21YH1/9V7ei61oeWnvwRcK6v Ay3ql6BQuSGkbbBQq9FZB/OHBjtJIUMoYi1H8M6hOrh2ieLfSBlC2wN5f5L/ 1IGy//mXLjrDSP2KFOmMRD04ih3JdpsZRkHapk/Bpx5IlfGS6gZUxDn/ZeO2 XQ0w1yo/zWgfQ9uaNadBsQHS6q5HSsyNoUNJfV3OxxpgPCrDfve2ceRyel1c plEDvO1adk5xGkd1sU67NG81QJ6xlKkjHkdPVEVV/6ttgC0PbQPerEygT/xZ 4lFtDbCbv6+yXIKGKqg6KzmUBhgLol3L0KCh34+9q5dwAwgfV6z5GUJD5yit xk9FGiGjWThxhZOOxAMeXCz8rxHuvrXk5ZinIxXT7Tr9Xo3wnntCpE54EhnL 5MmuutMI+tY5claHJlFQ0whL/znxvnSiUev1SUQVV/MdLGmE4fWpDwRHJtHn 8umINXxNkHU1KiG/ZAodXnEoMMtsAqsLtq6kk0xkaFQRcqqoCSrPCHPnnmOi i3E7TY5UNkH9Ab1Rq2tM9PTIIE2suwnmKSMRrFdMNOluI0r91wS3jqoXq0wy UfywRYCHUTMM6uqEbwthoRyFfD0ny2Z4pDInuT2aheoChLaYOzYDpdb59FAq C82IdGQcudkM91Q/5qTUsZDxGdOh5fhmCCvmnlDkZaNVlfqakcxmUP3dbyR3 n41ENqbxB802w23pN5rSz9lIwX49xYOjBYrdDT5SEtjIeqHWy1yoBexPOxs8 LGGjvIOnUredaAFWlcZkDZONGoJTbmzQaYG63jjt7L9sNNyyWn3FpAXCTOeV z3NhtOFqZTf1YgtcDjG5OiKGkWsycKeFtwA/JTGZpI1RwK93nXEvW+C24BXO VGOMXsByYmRCC2hKj5w4bIVRBaXs2I3cFghwPDcddQWjbjnxtRfLW6Cfsah7 zgsjps/tdvPaFmi1eydHvo2RqJDq1aOUFpj4bm+wNQKjA06xR/aOt8A5zc+X SS8w0sn6u1oct8C7TfrNp+Iw8jQsjF/hbIW152T2u3zGKOyN8H+/+FqhRkWI RyALowT6TZVR4VZ45V/7y7sAo6b7h1pq9rbCNds9X7wrMVIVaOR8pkI8p9jt CK3D6FOs4xGbk63A9UrW7FQLRsIyf6/uMmiFumTO4/kdGN3LjErEFq3g1qdU 19mL0c+ju7qKHVohdaqGlTyAkX1V6fr7V1uB9fhtghSVsN9L9xS52wphizdv K0wR9p2CPlLDWyH7+J5npSzCPmtLf/qrVhjc7sfz9ydG933SN/oktYLuXxga ncbo1yqtUxrphP+SbdxBs4T9iD4/3kLC3irfO/V/iXyEPTK7vrdC1K6IE1UL hL+ktaMJTa3gYGCjdm2J8Lfv7dYrPa0Q654XUP2P8FegbHiI2gpBNw7ONS4T /k42BC8zW+H5thNpISsY/W5wyK+bawWpvVzRdIKz0ha9T68iQZfJo9x/BNOw zpPMtSRQPvqKu5LgHSrPP2/mI8GBsO8vVAg29x+o8t1Egs/9buesCPvhSHZw QJgEUzX1Z/cS/iu5vP9qipNArrY1/MsiRn9PI8FPkiRYc0pnTf88RopPePZv 2EOC2VBUVTpH9Funha6nPAmakmKb9Gcweiua5NijRIJtN5d3PfqNUac98/aJ IyTIfDbafQtjxJty5FXSCRLMyPPQNjMx0pwMyVqrSYIbfCv2DnSM/BRaGq7q kkDMQ0zPdozIz0t0nGRIgraFoPR1w0R+Rc4rKmdJUBqz47UThchv+atonCUJ Mi5mbXbrxshCa1GZw44E0aElCnvaMIoI0zF2cSJBq0jkzNNGjOYFB0IU3Uhw ffQ78kJE/1rJvo32JMGV+uIRZhGRz1uvwnkfEmQfSGVuySHi38PDrAohwV51 5dW+yUQ8J45YWMWQoETRTu9OCBHP3RD38rck2L8u9ruvHxFPbfMjqWQSHDqy VCXtQfg/4/yNmUGCL1JQFW6L0WXXZ3vuVpFgC1eGxwclov+/9GtM1JFAdm/c 7z27ifn7ucfWoIUEz8bWk6yJeda+/e3plj4SmF6y29K1CqOdTxnzn9kkuLmz 98TOZjb65hj0OWeaBCvfXh6TqGAje+XN50v/ksBJ3eDdQA4bxXerFjVxtoGq b71Q1GtiP9r++BYWboM/+z7x1NuxkWCa7PQhaAPfnJSkqgEWyr5d9l5Nuw0q 7+/nedPEQqZGpmd1TrfBC57FXwqlLPTkp0+2pVkbrM0R64t+zUJ8R2rd/S+1 gfRwlZWFEQutqXZhoidtsK5GLLw5nYlSXs7H1UW3QaSXrmDCaybSvhRp0Bbb BguXaEgphIlCePLTqMltYEP3MIgj9u9lU67/1hS1QYKP1rX7Swz0d+D9uP5w G7z7PdFDPsFAjLmhwa4D7SB14c33zc8mUcGlJ5X6h9vBds/Xc2s8J1Fwj/oH dLwdltJeKOefnUTChW/dPuu0w7W1f7jPbJ5EmrdslgJs28H5wk/pkGd09OZP t6hMWDvo5YTpCRHnmd6vZnPPoXa4Hrjh0ZXD42izY+BR2lg7BF37JdoiMI4G SfLitlPtwJe28dQifQx5Z4WPnppphysnkhdz34yhBPfTnqK8HWD2p2112uIo mmVVP6k43AEBtMT1q/OoKGWqtIE/qgP29n2Ktlw1jK6/NpG+8qID5u6ZNGz9 MoSOaI/e/hHTAQl2Vq+VzIZQw1ue/QHJHZBbECAZ8H4Q/TI9/2SyqAPkd37a HKo2gNQLZ82qRztg+v69UjlXMuq7pzTgd6wTYga/Jy8+7ET82z/isbFOMHaZ OM1zrwJF/JfvmijTDUKifOQJ4pyZOpkRxru3G6YW7V6qrSb2NZHUtFuK3fCZ l21+qr4VOGuj2Yaq3SBmLMZxII0EfjLet+ZNuuHvjYqwU8rt4Dp08MHZ293Q NvEj/e6JLtCwyErlau8G9VvnX4fKUOCd/Kda955uwI++NI0EU2BpdeIkub8b whUUZ+f6KVCU82R/Nq0bZDmdA4yj+0Fho3u+3b9usHhURnm8MgDijft/FMj2 wLc25+rSi8Mwe/LL2OWgHvg8a0wK4h2FshRGnM/9Hjh6Oj6pSGkUQrjlzR48 6oHbEpH9NZajwE9K/578ogf2zcyrOSWPwu4Lme8GP/bAnqeOj8OPjsG5wGwr c1IPmPD3ujpYj0N+cWETSPbCRqkXMpN+NPDf/vee8e5eMLNL3Kv8hgYn7x49 brevFx5W3GnXK6FBk17xZ3+VXvA1u8jomqfBWE/Jg/zTvZB357+X7rfoIDRb fnKfZy9oqf5hO7tMgvfB6jzhql4Ik1mz+bkIA1wPSSQ+q+uFB2aGPXRlBlgd Dgjna+mFmnOk8r/GDDiuesiJs68X3Oz0ejXvM4BTM0WAze6F4T3lJb4MBjw5 c//KD7E+MN/4xE4pnQnBZsMWJyX6wOTtcsdCJRM8LU5olO7qg5g3vHZ+fUw4 d/7P1uwDfWCx36Y8eg0LxB2df8Tr9MFSytk76tYsSPPQlvD27ANPmdV1CjMs iPdM5MU+fbCv7m2i4jo2RHovzf4X2AdNTDWgirDBwzev+UJYH/BNYGHb42w4 Eixz2+Ad8f7AY8u3AWyQDQl2rUnug4GjB0P2RLBB7H7/GY3PfcC86CfiFMeG 5YfRskfyCCavmaIVsaH6CVe3VEMfGOt6/1P6yYaCZw7f37b2gYhji83xf2z4 9KIsXaSL8EdXXplejyH8tfc9/uE+UNdyfuYphSEglnT90Xgf5EVeOHlUAcP1 OHlrLkYfrO+tzUs/huFswtiBhZk+2N5n4ZNkQujtpJPiNxf7IIusFyFpjUEl OX7dTw4yVK/V/mPijEHko/ngOC8Z5pYFzAt9MAxlVoe3SZIh+2BHYsYbDCQW F/PgHjJIOHub+b3HUCF/yjBangwPhiZfznzGkJj2g8/yCBnKYyeDVgoxPJ1c 41Z0ggyREspckd8w3JXVaRbVJENnX2tbQzWhfz/URPYbkuHyXjFeSxIR7/ha ttpZMlw6X3c+tQuDloyucYIlGQSUGwuTyRgOXXyYyWFHhuXXMSJnhzDIvK/l d3Iig80pd4+sUQxCI+vcqy6RwfX3ubxvNAxrJPRaZdzI8PeqBDmAgWHWPkzx gScZdma69E6xMUy8rXtC8yFD1uKjD9y/MXT3c//UCyQDni4+0f0HQ+2206Zp IWRQ+sB4YTaHocj6URZvGBnCkgdTg+cxfIqt3+gWSYbb/OJudosYYnrX32h5 ToaST7Njk0sYHm3Vb1OMIcPA4OP1u5cx+J97rPTsLRn2tX/r2bSC4crLhme/ 35PhgoOmUQbB1p08v80+Efbknlz+S7DBZoOz+RlkiHtBl50m+MTZ8BzhXDI0 N9lEvSVY/lmjoG8RGaYbUOwcYV+cxOvVV06G96fzDVcRzCdg2KFaRYZNNR8+ lxDxLBlFKMfXkYHbry5XmoiXFdH04l8zYc9YxP0Ekc9gI98f+w4y7B6wG+Yi 8m3hMTKv6CWDpeXeDYHEenw7HZknOUgG6eDexZRfGDLDmoXujZKBHBuRG0Cs 57vaDTfH6GS4Yn7oBBex3k/WGnedYpPBu/jBu+NEPTzut7zknidD7diMcMkg Bocq/tn/lsmwPuu65iqivmc4Tc41rqbA1oXTnn87MRwMbhWO4qfA9v0hgnP1 GKSQgA/eTIG0jrvvlqswbF426TEVpUCFgpxrQTmGP7dJrzcT+3BJtyn9cBaG sZKNf73lKHBHq6B65ROGrnlTq24FCtwwiZTwS8JQ4NMmEnuMAirV+H3gMwwf Cjb5LahTwMPu7S/uRxhez5zps9GmAH7GsfFUMAZfr/bYHSYU+LFQJERyw3A5 R3AhyJwCX6Uvye0k5uf8r7PWI+cp8N424MpOYr5U3TvEUpwpIMXY2KN8CsPi lc44OX8KoMDQ01+3YjA/bPdMIYgCCVnHs+z4MKSvmnigfJ8CGh7HT9RxYLCP mbuhFkUB62W2XDudDd9/iOmdeU+BYKbjqbJ8Yn95lqx27iMF/K2elhp/YoOn rbyyTToFkhzzlN69YYPMtNoOlwIKfLbd9sr7DhseSjj+8W2ggMUxzs+cWmwY ZkxOBrZS4DbZ536wMhuOFnoOhXRSIKRE9kKZNBumjO43RAxSYEEjIf76ajYY 3f6YmPibAq92rZL4jliwuZtlWCfWDxvvl9iBPAuuJd3SbN7ZDyqdphGZIiyo vrZypF2mH14MHZUZ5GLBrdWbpPsV+qE77ptaUD8T+g4cmsea/cA4KzHbHMaE hHD/1K1X+2GHa4FSTRcD9mmsW3Yt7YcvZYKC9zSnICvty57ein4Qu8xTs2nX FBwSMj1zuqYfyMp3TOzWTcEJWkzKvrZ+MAj5ISTfOAnGkXsNfk70E/ORxsgy mQTPPqMYP8EB+CbqyPPOkA7FN6IPRvw3AD3jSWHnRSZAnXLU9t/1AUjd+MhC enocKrUHQq97D8BtJcq3vOZxaNi6u880aAA+rp2jKYaMQ395YdCWlwPwJ7n1 +HP6GHDwUJreVQxAxZqS33ZfRkH3veSl7K2DIGi5QWucdwQOxfDvrhEfBEMr yUMGo8MgEbU4RpYchHXCxmbhJcOw4NflxCU/CC/OGz2KuzwMGWce2VueHITA Kqla3gdDsHnVL4t/lwdBo+hNxkdqPwxdqNA+XTIIYReyCoev9YDP9gtSI7ZD 4CFj+t5npBbkmRa8PUbDMFlPjfrSXIOKzA3RY9NhCHWlqa55VYu0yjW91M2G QaihdI+0fR2yjlKkpFoNQ1t+WW8yqx49OrD+izdxD8H3643urm9GE95l+oJ+ xPPCD8f9Y9tQ4j+px0Ypw3CQ4bX2RUIPkncVVV/1cRj8/5K2SSz3oMIWgd95 n4chQVX3iodtL2pJWDov/nUYtt70mTsn0of+aXTLMYqH4ZWaS69kJBlZP3hU H9Y6DB3rPq4a+W8AbRb4yV29MAxN6c0Kg94jqL388cPT/4Zh25d5ncT4EfT8 2q61rSvDYPJCNPR49QgSbLBeTeYagf0V/MJLglQkGPrjH+YfAZ2nXZviM6lo 4+Kb39ukR6CKY6WFb3AU8dFO9XsZjAD9uV28+7YJ1PRy2HreaATinNPF89Qm UIT27b47piNwazk1ovbCBOJ9n9X9yGIErNPPCVgnTyAeu21tCRdGYFmj9e4u WRri7vj5o9FrBAbuK70RlqUjLhT3VTp+BMYWq48Frkwi8gltvaF3I/DmlamS 8/Yp9LWEOfwmaQSOiGwOXHd8ClkXqAkKfhyBb1eLB+/enELZGUPeHDkjcGI6 9YkabQrZx0urDtSOQP+zfduflTPQIbGm9piGEbAJ+j4o1sNA62O8r5o3j4Be 0e/btj8ZKO/Fj/jG9hG4/0hUe60UE/GGX1opHhgBITu9Tay7TFTk96X61fQI eJWuV29XZqGoOTO7s7MjQLmZnlamx0IXby7NbJgfgej3W1Vs7FiI/4bRntDl Edjw2qwlN5SFXC7jR17rqdBiNXeluZ2FVCdeSynyUeGXoLCo2TgLbXQ+WTrF T4UL2cdMwudYqOzCM6ajEBUUHgW9FtxG6DFLZRPTnVSQ+ZSb4GPPRvROCo1X igqq5/Y/jbjORuVn7wfXylBh5PSW1LN32OiycVe2+l4qXL4cGPsrntCDp3yE 9qtQ4ZhChuutbjaKrtqZQT9CBZ/+1Yobx9joP426UymqVLjmcYpx/hcbCamJ +mw7SYXqsLcFSzwYXT1U2rfegAo2TvnrAlQxqiB1pRcZUeH60+3V9qcw2uL2 M+iSKRU83Gtdp00wQqm7dv+woMJmMp5RcsZISPPkvJcVFcrLB79S3DD6b9C6 ScqGCp+Cf04d9sFo89annsEOVGDK1T1c9YjQw7lppxQvUmGgZEe5xzOMyk1+ iAy6UEEJF4s9i8XoUtjCt+NXqYD3mS+PfcKoTGbL8yk3KqyX5LUXycJo03dF l1gPKkT+vhW7VIBR6bwz79xNKsittb7QU4XRxldBg6m+VKjyKKhvrsfI5eCb bPPbVPhr9bzVuxWjkpa8+6vvUIH6rdWpqRMjgautljnBRD0Ett7q7MPIed3U Xsd7RL20e5YiBjEqTuZaFnhA1GOtDmOGitHF/mMpbuFU2DBM6+idwqjI19xH PIoK0p8vl5xlY7Rhi7t+41MqWD1XHgn4hZFT9qPt/i+oEHPU8aTlH4wKjVJ+ yr6iQqpfG2lkFiO+qW9VPTFUGArdFyE+j5Hjg75XD+KosO3nwLV1ixgVSP35 T+UdFZ6X7rj+fgkjXsSvNpZIhfZLjHDWP4wcbOQ2vkgm8l3grqIvY5Q/pzWq 8YEKxdxcm6JXMOKJti/4+Yn4vuSANyb4wgG/RwlfqDDalsZYIDiv6YWtcSYV lL9Y+BQQvP6/TMV/WVTQUO/fKkWw/Zp6zvRcIh/x7BY1wn5u0miXdQEVCq/x v1tP+OdWX/60vpgKixMzYaFEvHZkkYCiUirENx54kU3kk3NL2eTSNyoEk02+ R85htG6zsZTwdypE6H4REZvByPbr5ZnqKioYZzglnPuNUbbBvTqvGirk/rO1 1cIYraW/jZOqp0Kdh57lMAMjm/tF19saqRB+403MfjpGWRIdGsEtVGgKeyK3 bwyjNeUsIcU2KuzU2SfUN4SR9Xlu+kAHFVp3H714hILR1xmp0ohuKsz660rp dGPE9Vwt6ngfFaL1su3WtGF0XsHKcYpC5CcfLXWzEaPVlyLX6Y1Q4UPfzruu CCOr1Z/Is6NUsEwYP0ovwigjoTIjdYIKu/baF4jlYGTZO2e2mkmFq2rSus+T Mfpy2inx2yxRr3HzpuYQjA7JS6rDPBX25NQ/9PbH6Bv/MAUtUmG85NdA9w2M SB12W79zjIJjTltqywWM/tidj6riGYXVPgGdEUcxCjwpIq+9gdC5rTLPBRWI 9ZHuqa8WGIUts7eemktjJEo3X1MjNArbXbkzNmzASN3TNKBuxygIuTzeajnA RrXmAmKnJUdhXbN02HcSG5keaSmslx4FZr0s12QVGzktGUw3yI5CROGXKPfP bPTwge6V5oOjIFJVt8P+BhuR3qhbteuMwts7W6L6/7DQ+cB/M2dPj8Lv05/W 7h5jIeqFshcdBqOwIQZFKHSw0B8Z1dZO01EYPnPHIjCLhUS/quj0WI/CXtf1 XMKXWcipSv5Q//VRaC5XnznXyESMVEab7Y1RaOl+jpILmMg7LM19wGsU+IrD duckMdFDI9kvg76jkOVBCxbyYaL0HmmpkZBRSDFrDPmzg4lmGGIbJ16NQl0S l6HhRQaKfkurjY8dhcWv/jl5egykbJIXZBY/CnkNQo49+xnoRo4RrkgahV/X lj4bzk0hlm9wS1z6KMxeOBKz/GAKja+ZiDhTOQqnZyhPUOwk6tqZvb6cNQrx Dxc2dEfRkHdb4Hevn6Ow8+i5u6LXaGjzPX2/vdOjIPlxRUzyNA2dmRilv/47 CrfUtfbc4aSh5nThOs/VY1CX3Rbl5zmBfhwLeCArOgafVB+Qa3THUb6Z7upo 7TFQFL3+xqmBisIMikLFdcfA80u94MdkKrLVkuNOPT0GjKuGPJUBVMSpzLuh wHiMuG9GtQUoUJGxYKtwr9UYvDezMxV4OoLopHN7xd3GoCFrY/qMwTASM3Y9 k/JyDMrPxreHn6WgIL3QhLyJMWhKTKpJ305CkgP6vcmh4zBSwO8Z4FIGjyuP f7UIG4dhQy03xfly+P1R/sG68HFQla4YfRWBoNKT/9DVp+PwWXgy69j57+DM 3f7kYNw4bBl71DUfUA2flM/rfs8ah0xfvf+MSxpA4fGlgkHKOIztwF/1gzrg lbtV5NPBcSg7FSvxZ6gDVsxPO2uOjIOeq9Cdqyc7gbRzn+CHiXHwfdOkXMHR BTfy2W5uv8ahLkdwC+1ON+QN39y1tHYCLnTONlp59IHqkfvRogcnIJAibmkr OQTdTqKH3x6agBK9E5E83kPgFZXZI3FkAjRusWq8aoYgfbxXTPbEBBR6Gx9T VRmGHdH7kw7rTEBDIv+DyJ5h4PzVnWFmPQGmdIq80hYqNKbJ1UaGTICNzz0N Qc8xuNz97fKm0AkY+Ric6fFqDLg4zXlePpyAuZv06aSSMVA/f8coPmICAgS7 G25zjkPWuo6OtFcT8J/5wc1cxLpFOwcM16ZNQJNPcqb0+wmw3dE6v6pjAu42 bfkZm0gHflHP/NKuCaBx1v3U/U6H75u33LjZOwEGH7ZJF4zQYfd6Gzp9YALi Cn62tElOErp9oruVPgFqgum6/95NQkj9cu7b5Qn4c5+9fiiC0AvVSe6Wq2hw TsLJ5crnKaB90963iYsGWVQD7uwfU2CY9/j9/fU0cNfIWOX+bwq2JAg/uypE g6DftJnU/xjwyVvh+rG9NFA+lN5adYgJ1u5tctPyNBgYHuQcNWTChive4+mK NDjjbKld7MwEzwslthIqNHA4JPTv0QsmHNfXMVh3kgZvTBZK81lMYGtPrv2u SYOX077tD1azIBEiKv1P0aB5Z4DEBlEWcKm0H2Pr0yCJZyL0qBYLWnbay3ZZ /P/542iuaBYEi60ai7KiwTbD/cF+H1mgvCUlQc+GBldcvi8llbAghmdKuMyB BrFhS6N8wyxwmrm5JvkqDUKOtB46tYcNMw2RVI+7hL2HK99EPrKhn7fr8tI9 Gpg6emuX5bGh0lAcP3xA5MP1plaskg1PW9IW34XTwL7zogl3Pxv2ttcKNb8k 1nPLL433hH7duFkgziqGBn2ZXyPFRDDMmZ2THHtDA7HqpjlDaQzVXWP7FxNo EB67tWroKKFv+1bpyqXRYDxja3yJAwZtsdPNeenE990fT6y6gmGfzVOzk19p sLogVGuVF4a//TscLPNoIMA3orz/PobB7a4T1AIatKytnbWKwPDDPuPa9WIa qAo3tatFY3g+fNwv9BsNDkv3PzmYTOh3yXsrG7/TQM1B30QzDcMFp4bQ+Coa XAt4N8aTjUF+zOp5bh2xXjvemteUYxDclSgCjTTQsEoTLK7CMO9Ce9fQTPSL yEU353oMNbSbX0baaVD9NLhmrIPQ77LlSm5dNNh10yCjuBfDi/+4iv720KDr etQq3QEM/mkG6vfJNLC9z18cMYLBgfG8WmCABvczlBoej2PQkSfrxw3RYIa+ vE9jEsN+N8m23VQaWJru6P7KxCCUedkyZ4wGgvv6KroxhgX21wE1Gg0+rYiO 5//GMKw4d7F+kgYJyddOGM1gqPVQnzJn0oBLf7kifg5DZnaoxzCbBn5P37ql zGOI/t00e/UXDdiPS9ScFzHcVhYKnJumQW+z6/7+JQxO3jar783SgNfH4hjf Mga9/PeP+OdpIKlCsf9DsOLspMCbRRrcMWLHEfctED6i9GrXMlHPxN34/78/ WvLxFc/moENcZrnlP4JHi9D7E6vpsP9VVNcPghvm18rVraFD2Vbh/3T+/3sl VeOvZtx0YDz33BxE2H99+6XKEA8dLLicu93/YbhT1l96ZQMdUlYZ5okQ8Tn/ k9acFaCDct7+LL8FDPrqV+vuCtLBoD2j+flfDEpBOcYbttDh1yvBTc6zGEQq 5jtjttLBsEgriDWNYZlDw0ZGjA7Jtg3bFX9hGNMIG/kqTofhDW2/ZdkYGkNa Lx3fSYfKL9JrKFMYYrjsvc/K0MEtgJPj8ijx/cWtKm276bAhQPSW1RARTxVp xkSODkOrPwtyUTAcCNHyMVKgQ+oDxfGINgyvRpaONB2gw/xcjOKVJmJ9Thb8 1Vemg0TOhXrOWgx1K7L+ekfp4F2tL+ZaikHhAlW1VpUOe2LvTx3IJ+r1LW7x lBodnvnpnCjMJPonkD9QS5MOxp8m42cTiXlbmA5SN6SDYkfWskYIBlvrjJPl xoQ/O8l7U34YKotdV504Q4ede3etN7mBIcq3L+TYOToMlPY6G17AsHv2W+gh Bzr8/e/dQzFiPiMsfHVynegge/CsRup+DL/zlNYddKHDLQ6bJKYUhm9eKWGK V+hQYZmYnU3M/7lfj8L3etOh9+ketHWADWWmWoafb9FBUCHf7DGJDVJZS3yy fnTwVCy0LKliA/u6e9SuO3R4sNtuu9lnNoQyzZ9JhBH7/pZr9VdusGHKgP9s wmM6+KTQVhqd2GD6pVZwRyQR7yztOcOMDeJXVKO3PadDY+ETE1cVNuTRdr4W jqfDApO/wWiGBWK6fZYv3xHrd8TxYeoYsV9+eC4ilEQHv+Ti7LIOFhi6rHmz 6QMdjvHJDMtls2CMOhXPl0WHyK626tX/sWDzYP57zmo6aIu7+vU2MSGKLzCw sIYO/XMD53wKmMBzXNvqWj0dPtv6qzYnMIEzpn1DdwsdmLNai+9uMOH3Gez7 uY8OZ9qdBoY3MYH0Q9bEFNOhg/7aUOgUAwz/YLk1v4n1UOXZfnIvA+qkCrlK /tAh1j+VuluAASjoVIn0AlGPoXuOu3unIPOY0645rknIuqs08sd1CiIy4hbf ik0S/ZhRIOA7Cdz9Tt1nt0+Ci2h7HN/5SbjPszd7ncQkVCn5CdUfm4Tbl4pc b+yaBB+/uuW7hN0rkl1t2gcmQdXhyNMlXzroveT/xDg1CaY+4Gt3hQZrAu+a H7sxCZutFp4dkhyHvF/MeeQ1CZ5TGSY2/8bA2dUqQefWJGTHuL406xuDahPF KbPbhF8f+7/FT8fgvtRA0PXQSShYN8h2/TcKXHVHvyTHToJmmrvPI0K3cG7+ uYq/chIid/soaZ0dBo7P9l+pglOwSiKY99JEF3i++RopWDkFYzs917198gUV Lr15WFk9Bd+PJQg3F2WiJfsHdz1rp0DX7I1Q788s9FDa7mZ70xSI0LO7j4jm ofh0HrvnPcS5vyxpc/tSCfrxzUVekDUFeZKKCia3q5DI6LbGTSIM2FAi54FH WlH5vjDuTdcZsHMg8U0BiYIOd25tfu7BAO9nEhX5u/pRVsDHZ0JeDCj0bLvv 49+P3jfXiIn4MqBz65r1J6UHUJj7mv07QxigEHyBRroxiM7mhpzZ/4oBtaNh z+TuDiOaauCb098Y4HeuH3PMUpHDKN+FxgoGsG8ozy5tG0Xk8HhpoyoGWHLx nWnVGEVN/aXppnUMiI8sLJmJGEU5dxa+WbYzYOMWR/eTkmMooNJn1GWCAYMe OjsfaoyjTfqe8iH8TDDj3zFUak9Did8FeFWJvtuezL/93V0aOnAsY/LXZibs 8jLYqp1CQ8ay9A+Ookxwspge6KPT0OO19pIaMkzQuqYgLe1OR1xVp4U5VIn3 H1dvpLpPoheqtD+FJ5igJLNY3xM1iaRy7ne4AxNczX4thWdMopNJ6OmQNhOG sideKkxNosAgFV5kwoRrRtGS5g5TaPa4JMcdFyb0k85oDAEDheZ+G1S5zATl BME9sdYMJLTPtpx1hQkp+UMMvpuEXhF77W/nwYQTUfxckp8ZyOMv38yJ20yw feV24M8GJprM+zu5+JQJJuyhIf4GJvKVf1WXS9yzBvUbbusNMxF3ivLHq6+Y wLTPETg6y0S7X1x3psQxYZusDhyVJPTXjbHBkg9MoFXW/SjwYqH+/aQOvzIm oPCMvUE8bJTA2BS4GhH55Rle7xUj9OFns92R35lQVuZyjb2XjSZlenwTa5hg o9LJbarPRrPbBrfXkphQvcVkfjyUjUr6dtaadjBhTNNESzKajQJfO3qQu4h8 7KuPirxnI67N45UsMhNmdTs/Hy1no008zEtC40xInQxyOPmTjTpr9296RyPW 69KvcoslNooJdS/ZM8WE7BP/BnZxY7Rj1TTfccwEYXP60swOjOT/zmc7zjNh eVx8/uxpjHD+cRvGIhM+bTuadtwMoxyvQK6by0yQ8kM2g7YYHcMclmHEvfOR 6pMrZ9wx0plYt5S5gQVXMiY4mU8xWp9yOvXoRhaMy7TdeR+DUZNjuHGlIAvi vAQdBBMxMhvgT+raygJO/m8bd2RiJBxnqn9BjAXUkB8VxXkYka2eT9PFWRBy yf41fylGDp1bdJYkWSBzySB4tAYjmeeWOFSGBekKir4XmzCimcTGCOxhwaqF Ksf4NozSNlA0YuVY0GhtrxTVjdH1RnGGlDwLXKp/UY5SMFJ6ZB+drsCCOykb LeOHMPqjk6h2WIkFAf7MmKJRjG5XSj89fZi4Fw+XGW5jYKQe7HKs4ygLrEIP ZDqyMeJU/0i1PU7E43Eh3+EXRj8W6eETaizQTn1tI/IHo7DivSoeJ1lQ+Lnm TdgsRoY+1wbnNVlg89TPLfsvRgIqmQ/vnSLOmbUDLc8XMGr/jQ9s0GNBvm15 ifwSRq+ylMiv9FkgG/1gf9A/jM5f97onYcSCVCdtmcfLGInL58unmbDgwPH3 8UYrGA1PznYpn2VB71lGdD3ByR+PBpWbsyAohYdvmWBXF39ZXUvi3Jp+vIpB 8F7psjbSeRZ8bXx18ynBrOF//ta2LFgJ+XuZTdjPegcyY/YsKFYRG+AieNp/ ep2jIwv27rh/j0zEd9jyI2PgIgvoOQU+Vxcx8lW2abV2ZUHB4ZqywnmMSgUE cnsusyDUzfocmsNomVH5yvwqC95HZ+qFzGB0su6Wf5sbC16efxbDMY3RvZS9 9sYeLOhsdTZQ/YlRTfCgRqMnC1RcdlxSZGHEbfd8l95NFkh36fwemsTI4JjO +h8+LAgTW5g2mMAoassCU8Of0EEONC8vKkakXxmkbwEscP5t6n9uEKPNLY55 x4NYQJLl2zjTh9G5tC0xRXdZsGh5V92kCyOKU+CFnAcsyLQTjTrcSMwHKGkp PmJB0jpGddUPov+2je9OD2fBR6lOxFeB0USHITv1KQtmJ18pt+diJJvF0S71 gogvK7fGOAOjqxF5+QkvifpT3c4+/IDRT23xwNg3LChKCouSJ+ZBWZLkIPyW uCdwl9vFEvNy69897RcJLHhuePhiZRhGi/kM3sgUFrjdGjE/7YvR2j2lb4Iz WeBeodcib47R6dXud/5lEe/rd+sE6mMUMSTl5J/LgukPxyIen8RoU8xjOe8i FngeeNhB2Uf0y3rrokuVLLDUGW62WWGjC+Mb4seqWbDuVqPUy2k2ev/9e5Bj LQuEJA6shNPYaI+/nK5NEwvyLloV5LSw0UHG3y7jbmK+XtCEaLFsdLM2vbix lwW8D3xjBCLYqCjZ4a0ehQUGO7vuzgaykZptnbMmoRt/74hdWXFgI73m19Mq U0Q/i8SIrpFhI7uvhzdtX2ZBn8RT6Zm3LFRg/ZefxMEGxRqL+PDHLMS/toTv 3mo2aFn5X+q5xUIVtmrck9xskD1FLntizEJSPNoreZvZsP/KENejBSaacD7D MpRjg+tqPu9mbSZS37iZsbKPDcWPD3K1yzPR69JOeo4CG2gCzdZPhJhIT9Bq TOQQG7bIOJ1RGWWgNGRPGVNnw1kH3VMqgQx0XexafYA5GygqKy/VU6ZQzY/9 tYqWbFivMEliPZxCO2/gaup5Noykay2cvzqFSLWeFXoX2HD7z9SxK0pT6OBN v0KhK2xQLtsf6FkyieZaH6SmB7HhZkFJnnMFHQWHJt3tT2OD8Y1Pf9a8m0Ab fNbpO2aw4foobb9lwAR6c9lNcOIrG54nJtFvWU+gXINjyZjQ1VIjyhukhSfQ xKa2ak7Ehu8BihaHw8eRwTsObrkONsQHVBlFXBtDwoUXom4uskHC6YLwbn4q yqBvj+M3xLA48d/+UNSHzmziP1pL6B7n3VW9unFh6PEazm39BI8FCBT2Hw1D 1fMz/34SLG63/uGN7ofoMHWgSozQeQlh7KU3mx4isdwMk+sEn+uh6LAehiKq udGlLYSumkX7HzzxDkHeMRGvLhK661jj1uiYOF+UERHs50sws/TFW9TtgyaC vW0jCU45NhczsckHWf1nK1VI8PE7OpcOhd1EaqrymTyEjnPqr7je6u2J1vY3 /sgm+EP6wvZ18ZcRkNCnGoJZjzgpZoKXkG91bvj//y9FRsT1cWKYC5pKjzuz htCF4VGjVcduOqGWwKsDVgSLs61v9cRboXWeFyrcCC4Y3HTa45EFOulqlhxC sLLABoH1t86iHOPj/6UTLBm096/3Oz3E0FQ0/E5wRUu40QcfTSRzRFqxm+D0 25wHviYdRfb7tgoS+yrEtxVfk/4ki17v5J1ZIdiotiOvixT77X+b03iv "]]}}, AspectRatio->0.25, Axes->True, AxesOrigin->{0, 0}, PlotRange->{{0, 1}, {-0.9999990687548602, 0.999998732918772}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{3.398312869590019*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"2", " ", "\[Pi]", " ", "x"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{"6", " ", "\[Pi]", " ", "x"}], "]"}]}], ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", "0", ",", " ", "1"}], "}"}], ",", " ", RowBox[{"AspectRatio", " ", "->", " ", ".25"}]}], "]"}]], "Input", CellChangeTimes->{{3.397798172633587*^9, 3.397798178121478*^9}, { 3.397798316360256*^9, 3.3977983886542096`*^9}, {3.397799463890323*^9, 3.397799481786056*^9}, 3.397799721010043*^9, 3.3983125438015585`*^9}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwUWnk4VG8bRouSFmuSdiGhfi2k5G5R9qLsREpRSpJCEQmphBJJCmWJiOz7 Qfbs2beZY2QGw7TZIn3n+2uu+zpnnud+tvd97rlm07lrpy7wcHFxHVjIxfX/ T60LrOaSYUPVhb+fnW8v335w4VFxR9qaPZD2icvPO8NU3R0VHpmxRg2r0jPt lM7wYlBC8p6L1Als0LJt8dYQh3Z9R/rrNQZIfEESzyykIRmwLu7fBlO81ypZ ueTQLsxpnX9hLWUJy/ittSrq+zHi01puHWaNnpLIg3TyMIxtpoqerbGBenXH 7XQzdZQfFc/5HHkRSuk1bn+e6GLnloNpvzdcgnJQ9aL6g6cQyXM2ces7e6y7 9T0/R8AISwa83xpJOSB0VUVe0hEz5NNb6j8bOEJU6lHE0yZLOOrZaFmEXUe0 mKnYhz5r9O14cPTJGmfMD3rffnzaFs+jxEq2mt9Ey+/EP+OnL0NrZZJKceQt nKgVkAnwvors8bq9nA1uUOL7ayi+1wlXLC3TH1jfhsxOzZ1BAs7Y3MBR2Pju Dp6cfoZ/C28hMEVQRl/qLoST7/sn7byNY+tiY4dtPWG+h9ex2c4ddysjVpUa eKHY7SmrNucu9ijKPTENu4eq56YrFtbfQ7TISb9Ha3xgXpIVLqv0AHfqX5Qb 5ftgiWZRQn+KP4x86TxbzH2R6+M5Vr3jEfgnrnsWRPphvHal+2bDJ3Btfe7K 3vAQ99f/t+WB4DOcDujLzi15iBvlDFHdP8+goCY14WP9CBclPxBPmCEYzMi5 vu7dY6j53P5zpSUU+iHdl09IBeK56s7idcMvIae9JVG8KhAfFTpL9sxFYMmC K8wh2yB0hvEaRQlHwipv/hNhEAyf1F2ppoZvILItWMEk7Cnmdc+cZjyKwb0l GdIP1zxHltNocGxlPGTVn/qnOz5HxTKjuFD/BLT4XhvuqXqO2AOs3Q667yG5 QO6Dwq1QkPtPjX+mJaLyb6xCa0sYmJmLrtyTSgH/r7C9GwJe4vGN1mOLJNKR 9d/NMA3GS6z9JCa0LiQdlo6np67vj8Dhq/uU7y3LQOrYyrxyVgTCgv1eb+HK xCmWv8rlY5H4XHfhpvd0FsL7bh/Nmn+Dm+VJW9ZtycdhCdPYfsMofJqdufA2 JR8jZkqLlqREQawqvFlNuQDr2W7nU+SjMerNfab1dCGuXVLcytUbjXleP/3P ocUQtEl9H7fvLd4N6+fNxJbCxDQm9fuPWDxut3pxK6USnB4DvrficZDg+S8i YbYSfpZLLpw+GodjS4dPbNGqQsb5a+LZz+PQz3xi/5tZhRUOB33vKMVD/FT0 mSapGlR4d5kt9kjA8gaFxdxpX7ArWWCxxJIkeIf75hxxasKyf/cs1NenwpjT aSuT34bwS8aWcsdTIZe0338low2SrXJnBRxSoS7B/3twWTtUEzvO9xSlwiCl +ZDxmXbkJYZl5SikYeXozqzD/9oxdppdqN2Qhjpnfj8H1U4Yvn/x5cbydHy8 1NKwJ7YbkWe8dS5uSke5vso/1ZpuDAherTfZm477inQbifFuXPM40njwTDqW 5al66yr14OGpsRbelHS86N/I7VTVg6K5I92vdDJwKfBG3PL+XmzVH2d9fpwJ TF//M9vfD3FP9f22MZmQ3h0rfv5fP1alRD/my8lEwdfNmS4baPiz5LSC/kAm vmSaPoqzpKGpJOdG/74skCmmATOdNFSMr6q4dyILUWN6SumTNORLXBbdapOF bW53by7hoyPOVSLPPigLjxu9LvZL0XF757356W9Z+NPpnW1mScc1y+6TkbNZ WG/V8LbMng6bgN0xEMiGW5nK4j+udJxkfTvqp5KNLIdEt7ZndEhGaz0UCsnG JhXrHbvL6WhYKSyscCgHP17lnZRfR+LzwasXmg1z8HXpprdm0iRy7Suzne1z cMdw1aDefyTeVbmaFoTlYGJry6cwNRKunn1vNMZy8MgldpGHHYmrKYrfR3ly EZUyb8l0JHGuJ+hwkFgujvB+zlrtRkJX6chg29FcxPKRv6r9SWzmxG87H5EL +qsKAZs4EqvXcd1ZnEY919BO/f2BBL+2aV1iRS7GQjJCNNJJTMUvu/b9ey46 G61Y+4pJsFttSkIW58HzZ35262cSAzzFAkoSeTh0RdZ/Vw2JOkvHTA/1PPR/ DJjd9ZVEWUDNok1n8rD4VNqCtg4SOfmbjcud8hD0n26PUi+JZNad97b+eXgR umqfOZ3EW9G2Gb431PfZ6U2qgyReqClof8zIw1LDGYsBJokApweR+jV50Fyf E3pslIR3NH3sd38edLUa99iNk3BpUEb47zw8XKw4ofmDxAqFrG81S/KBH465 xC8SsU92BsxK5GNL0dDDuQkS+8c+7JL/Lx/cS3n2cE2TaNaR7rI8lg+NAS7v 2hkSdslvPYNN83GlZALmsyTml62XKruaj+0e1fvT50g8t39Z9+tePtw1lQ41 /iWx/Yvwja1h+dCP6lifPk/FLxu8xjgpHyI7V8eb/SNh8mhZiX9xPvobVeKr KTw+7HcxvyUfFmcufZ+lsK8mz3L2UD5c48ONflNYItEjY91sPmI13374ROH0 JTOmJ1cWoCFk/+fdFNawc+a6t6UA/Oa/rt+m/NGqOPHpSgWgt6k88aX43JK2 1x3ULoDQtYujBhRf/gdDv0TOFkA3LOo86w+V7yHrCHXnAkg/ma4HFa/y8b5D bv4F6Nt5foH5FImmOBNmUmQBkkoy+pSpfF1c1PqkN60AD6NjlHp/kpizObln RUUBUsSq2Ye/kwgpr+1GVwGuCSR0XR4jISt5/N71sQLkfXnXYzRCouR+qfQ7 7kIIhS1tXkTV04ih0tAqUgiRu3wvXRgkxo7kOi+WLcTZeUIomUbC5+3utftU C7E2cfvmdz0kxHlSSy+dKkR/g1K8BdVP6qVxK+pvF6LR6PIr0QYS/Rs3Zc0H FmIjMdkqSvWjs1ek+c53hchmfBfuovo1BiHvQ74U4s8qsaPvcknsi1pxsoJW iAd2S7k/UP3eMP9wYvJXISx3/bRxTiYxW+R1xEyiCHKddtXaUSSerZtjPd5Z hPhG2SjTcBIyHi5BRWpFyLfXrZV5SsJQxaF349UiXGbYtfN5k0jNN7/FLCrC fXYob+9ZEsfFOyTWtBRhRORq4U9jEr1upz5rDRXhyaegk7UnSCxV1lz1cUUx zIoSmQUHSJzPUUxytipGRse2iQRBEn9E0/XibxRDNT/tQzkvieBb8lMdD4oh z9zD+3aOjqK9kmoH0oqxpLbg7ZtvdKzOFOjn5iYQ1HLQJCqTDouAWYNBUQLz O0auJcXT8dbm25dKOQLZ3/Uk7cPpkBPJy3tsQmDVokGP5XfoOHLrbKhIGgH5 hbXT7Sp0+J/Q4p+uIPDT/t2PIDk66qX23O/uIRCit4A2v5aO5NH7uY0LSjAV Lpb39xcNipHG8c93lGBT2rstQhdoMPWvI333l0Bg7a5EFmhwdz68zuVYCQYK 6Ne3i9NQqrP9ual5CUSMdiXP1PVD5+/8vfUPSvBB5PgtYns/rC3jz7zvL0H+ 7gOvFBp64aO19uXL4RLEzSzgno7qRbxicOuj3yW4e7vebPf1XrBX3Na+yleK zh+3nbgFe3GL0FXepViKZUU67ot1exCwcUK48Ekp/nt7tkQ0sQvZA0frGlXK EL300uPRuTa0a9z78US9DHr+qmJLiTZMfiwW1TlVhrA38v999GqD0h1l62rb Mkw+OPD+KU8bcoV2TJY8K4NZv+LjJq5W5KmJb0xnlUF2m9OOOmYzCuO/33j+ /DNKXV1ydtbWouzy67Wm7HIwerqkFzslIWPY3t5yshzfwy1NIn8lINZuf8F5 rgqsu+vY5XYjDr4XO8wchCvwKabIRdohGhrnBCLuq1QgR2ffUstDD9Fo6iv2 MaAC2+qDXoRcjCR6Na6KLJCvxPuh+pMyAoXEhNTBlSlXqxAY0mq3vaiZUB04 UvXItQrd74ZCb4i3EH6vNTzt7lfBOuycR7pLCyEqbMDZ8rIKZqc0d6/c9ZVQ 5LZvjCivAjKl92+IbyVce8KD/NdWQ1HRyv/6ow5iLuj3SpuaaliO+AS+3d9H qGn/qTrcWo03cYZ3dz/vIwIWc3ltoFVjMHR45dOxPmKdx7Lv3b+rIXWUGEmO 6idUL29u0t9YA/sjFmkxXHTCU00vGC41sKKnHrpoQRI8Mx9Wrd1aC1frnxqH pxnE2vojv7CjFjH0hlr2ukFiT0xXm41yLcbKDwQ4Hh0kLmjyvvqoW4uTz9aS 808GieqX57YeuVULrcX9zts2fSOC9q/Zf6mqFiqB7hM6GCIk3P3O51z6gqO+ +UpRxixir9664703vkDdyr7jqguLOCGZKcN99ws+nX5lvPgFi/CsI8e0nn2B SelJo5A2FjEgcdC1P/8LPrQd+iugN0wkFv0KWMRfh+z1eaWa+0cIxX9ns09/ rMMCh5sOS8hRQke3xPtYbh2E1gpO9kyPEudfbTipVFYHZVJF1XEVmwhW6meK t9dBzC6e7FJlE8PXzNcM/K3DR5VOs8RwNhFJN3R31K2Hv2Ao6w/GiHSFLI1z xvUwOpaclHt6jKh2FxYxsK6H8JMDTbtsx4gJsa8pSjfrIRRsom3+ZIw4oa9H m4+sx4XFSia32scI7jKtI0/Y9ZgqlTZ4az5OiK1KWuE5WY+9QdkFfPbjhILl 0h5Hrga8W8jPLXd7nDD7U3XDQLgBLlXm58JfjBOZu47FrVVpgFrtMiuhxnGi 1iv2+vLjDUhaJBh4sHecoDcsUP13soHah9hyG4bHieX2Ze0D5xtQesFaeAkP h7j4DkuSHjdA50DQ3is7OYT7jzetr0IbsLNMxF/3AIcIwXz0k6gGxJ4aFP12 jEOU9BQqX89ogJ3kNmtFMw7Rvk1i8fmiBizg7u3mnOcQbJc7LQZVDTBerr/c 6iqHWCO8335fTwOmaMe3WHpyiJ3nXirJfmuA0OP7dWMPOMTxtOkFEpwG1C+Y zdsVzCGcdHIi//E0oj7PcaonikP4R4he+sHfiIxLOcKHEjhEFOvmXoZoI477 1q4y/cgh6nz2NFTKNuJ2rqFWYgGH2L/yC8/TvY1wHl202aaMQ7x/aa1kfqgR 0V67NlZWcwhRyWn7rdqNOLnWR66xgUPc/xgYzTFshIve5A7PVg7xfd/Wtryz jbi1tFO4vYtDWH4uWOpj34jV5JfKr/2U/U6Wk9i9Rii3ial/ZlL2z3kmDDxu hMVzi1+Zo5T9MZHe5DDKn6a/jC6HQ/i4JK9yiWmET8a3zsc/OcQP7qPHDic3 4sW00LTjBGU/oMttWQ6Fe3nvzE1R8Yg6fmwrbUQDZ5mJwh/KX8xiRlRdI4py S/wWz1H+tr9efbmjEcs6Jbh8/1L+snfr7BloxEepq8WJ85S/Q7Ve8+xGXGgw KHL+xyF+1p7Nqp5qxFWL+plvFE5LmnXW5G7CnQYpp78UZnKOB31c3IS/L3ml Cii8fu+zRCH+JkSkXBHdQGGD232fXQWaMHYl8dg2yv5jQqa/T7QJIfG2OV0U n7KFztNHJJrg7JPguHOWQ0xrEoLvNzVB4xbhIj/DIXYE8ckvl27CZVGL1qZJ qt9aDdWd5JrAXuIVJP6bQ7xeE2Pd8V8TOK33M/h+cIhWS/YdFaUmqOSK6MSM cYhlsUphMSpNkLupfLF/mEMcGfZOW3ykCU3iGqvKvnEIN4WGWnv1JthUcUx1 SCq+G2u+Nek0YcmF3QYevVR8uTb/9p5qQvnZywKGHVR886lrXhk3od/8UNzX Zg5heHR2N9eZJjh1ZErOfOEQAf7HT1w414Sz3eLxFRUcYkawz3vH1SZgJH6F QS7VvyYyr59TOu+StMA20U9UPK9v5My4NOGq4+8PnokUf2k+9mfvJrg4/HdW 8yXFR0XJ0CS8CYeWXvmX70zxued9reh1E2yh3lxwmeJTVf9w87sm9BbUrb5w lvKvb1PMTmmCZE5RzCctDmF38an0vc9NsMoW1FJaS/X/h97DQ9VNSOKdNfFa Qc3fd2kL7QYq/+6/Dtzg5hBqd4qDRbqasDBU/rjx0DixIXh0JnG8CV5xUdvX J48Txdaeiem/miAeJP+54vU4YblbyLRgmuLXM1GzJWiciGzfn1vH0wwLfyHW guvUebTu0S2OaDOOWp3gmP43Tggmyfzag2a4VS71DIgdIz7dKXx7UK0Z7sJ2 jRlPxwg9Xb1TxzWb8XWFyeLQu2NE0HeXT8anm4Gl2Vv9jMcIfqWqa7dtm8EI yNaRXTxGLCq/wCaCmiG0h39HthGbiA2deVX9vBlfNnq7vgKbULN9ot38shk2 Czcvggyb8ObLShp41wwD3QGJMur8ntdbeGlRbjPGPaKYJWGjxHTf229a9GY8 Pc8dyaocIUanaP1tO1tQ6F/No/6HRWTbBpVpKbZgZu71jQVdLMKrQzWeONCC yluz1Z45LEI05/XVxOMtkDrwY2v+DRZx5Jb5nLtFC7p1xeeODjOJiN/tayT9 W/Ah2vDFppohQuNHvYETrQVzfI05PVaDROxIQe2KwK+oGd6gnCjcT6xYl8AZ HGyFdMu8UI9GEXHI6H4fY7gVpzzTbxtMFhBOQVZfBsZbIXRkTc6e2HyinVss gT7dipc8f8yUuXOJN0P+lr38bag/9M2+pCSdUEi7XP91Txv4OowX6KRHE7pH FT6U+bShaVb50TN2Au66870sfdiGRYppC6UvJSEta8ivJLANrwQuWc8zkiEs E3WuOLwNBjx/W+RG0tDLv0o8P7kNNe8HP3k2ZuFK+w//T61tGN2tN7DInkDA payL0ZLtuHl25zcNZjVGDqX4L5NtxzehA2JH79VAXSwu6daOdoRn35P1EK8F T9XzcZ397fh499WdRK0vcJN0vjVzsh3S3U4BqTH1uEjb5XfqTjuCsqcXOQk3 ozxb9n2RVzvW3u9x4TFvxubAzbUyfu2IkzfrkoxpRp+K4Ip/we341TH1n4Rc CwwifoR+iG+HfeSdDYTKVxw2TItb2NIO/qcWUnIabXgj977qWgf1Pi1a2/NB G+YWRA9397Yj+8iHmyaV1L6YHiT/idkOved9shFH2qGw6lrWmb/tsNE90qex twMSX+QrsmU6sLZTanUNTxcmD30YtPPswDqBlPa7+3tRGDv6ysWnAzwXCi4a XeyF9xK5034PO6B5238u82kvVjQll74L6UDxXbtFi5m9kLL6+KY/oQOnhHY8 5jzug5HHJxODpg4cSeOKjy/uhwT5Y+X5tg5Yqh52bBjox4Darqrr3R14fyzw hNtiGhz4M/YGDXbgRq1RoLEODX6vMgVrpzuQevCO638tNGTl5dRhUydqmaWb 15+n4/a66fsnpDrRskWv9fB1Og7d23fgzPZOnLWMXiHlSUedRl7i7b2dyDZX /bcjgo7Bjny/LM1OOF5g7NKspyPpwOzB8hOdCEyX9HPsosMx6sBEy+lOdFh2 qZpQ+mbuYuH572c6wXxkQ9pR+kd4sujQdqdOlJyKlwqSJtFtOj+l7NKJhxct uvP+IxFdpJqq4d4JaCuuiKP0lZwvse6iXyfibOZFiij99ZP1r9X5cSd6PKTn hil9lqtzKOB+cCeGAob9Oij9piZc+ic6ohPraYp5v6+T4HPlTk+N6sQGk9jb krcpvdxz+FJxbCduODoIi1D6z+JdWUfPx078J2+4UpnSh867yjNFP3eiLUNy WSClLy/u2Rj9tLoT5o1kmkYGCRNF98f8DZ2obGTT8/JIHNi/5xxPVye6z2w3 Kqmg+KoE63r0d0LJIavL8AuJ9arsfdOMTtwn9tm8bSLBcyR25fh4J0Q9R8Ws u0n8Pso1a/e7ExkBiY+/9pP4dsxiiDHTiZeH3cP+DpBoV89ttvzXiT6FtrO0 IRLVmsJFXQu7cOKInZAbpdfztR3fG/B1YVGlbGctpeeTdetCGld2YZ/Zqe5W Su+/OSnjqSXShT3Dp4+/+EUiSN/ncoV4F1pCBzQFJ0l4naYbHtrYhbl340LH p0k4GaocLtjahQLz2NZdf0jYGIfLKW7vgufQ5aLOWRJGpr9Xf9rZhVopBte+ vyQ0zPUWyCl24cCjoRa9eRLKZ5LH4w90YV27r92WfyRkrZZ0bzrcBbVx3unU //9eYm1TEXm8CxfDWLmTFF5xviRttU4X+BQ6GFMU5rogEflMvwvVF7PSMyj8 86Lrg+XGXdCbCD0rS2GGXauTv0UX8lUKtllQ/lov77RccK4L8b9DtTUpPpVX AjTv2nahvebzwp8U31wH1p6ZK12wnVkeakTFk+SottHZqQutQ7YHXah4I52i l3FcuuCePAYDKh9PnOcmL3l0YWnCAG2MytfdWyYDg95duD6baq32g4Sja2a9 lX8XqlYz+EzGSZy7vSqv+0kXfijIbd42SsLA/UqsYUgXFqRacHKYJJS8JO9o v+nCtqtGTSvpJGS8vS5WvutC8VMzt67//17i06t/mNK1dlm5POc6SMw/eC6j lEnlm75mLK2exPeH34XS87pwL2ET26WaBPlY558c0YWfTx7y/isjUR60sH1z bRd0csx6TuSQyH56tvR1YxcWJ1jsF/tE4n1IYbJYWxd+P2TzvEsi8fiF8/0V 9C6oL3PaNh9J4lTU4M4/E12QGmU7td6l5ifmkMTN2S6wiK6i9Fsk9r6L5P3O 1Q3kWakaOpAQSzDo/7asG5bbNUxZFiRoH8sfN2/qRpHQOXd9JWq+xhayd0l3 I6krnf5InkSJ3DGd53LdmEiUDX6yhZrvpAp+Y6VufCnhO/V9BZW/+MonvTrd MI2WXKvIoGPodXUQ06Ub+oQm1nrT0d675LuGRze+9vkpid2ko2qtpl6Sdzf8 7h6kDdrS8f5lzaqrT6jnEgo/xnXouBxa+/Tn2274/urc3SJMx1hAXcjf+m6k pl7Y77iPhv4v/L8tv3ZDvKZ1Z40YDQ18ugYlnd3w3B9U0Tjdj4/+9cL3Gd3o 0bH0G87ph6NPQ+iSmW6o1RvVX9rVj993ml4ISfZgl6uapvOaPsxebn217XYP Qhv4j7/K7oaB4pmnCp494MT7xak87UYy95Dfbp8eVOo/YX2yp/IWPnX9YGAP HF5Ou6/d2I3SCnEN/bc9eHkmKY3nQRcebLT+7Vrbg3T+EF5StxNC7WM61eK9 oBsWB41UtGH7Yd75iwW98I2u3D4Z1IS0pA/SnSW9yEsVFKRRe+geYT19zcpe 2Ln8UWzbS+3FzPDY7c29SNYLF+ihdMOJJ7La34d6sWmpu2unfgOcunTD3QT7 4Ki9j7Mu8Avyrj/fFXCpD5p8yjVaipVQ7dln8dehD/2TTqQLowJlan2+Ds59 WDsQ+IfraQVqV0t16Xn24UXm2haFsXL0FuV4ioT2YU7z2ox80mdw8fXUvSnp w+Bq0slkXynU326y/bS6H7qNs/WO5/OwJ3yFVKVEPxatXb6seDAXGwNnB7s3 9eOp5/Mr/La5+OPWdm6hXD/mkn4HZjvkIEX/oaXxoX60Mm8W+jzKghD3D8O/ dv3o91YpWjP5CVxTfcKCDv1ITDYRC/f/BDa79qvUjX6ohRi1qkh8QmVnrL6e Rz+0XN1+cqunwS3NRPfdU8p+ZK7YZcMU0KxK1DTz+3GBfKc6Y5KAOsOUBZZE P+6fvOaUEBuPXO2IMqfyfkxfWMmi/4zDMyXnQ5EN/bD1y7iz4EUsjq2UUeFQ 97LuwZGXF+ZjsGuRyOwCVj/8x64F1FnGYP0sd77YWD/i5gp3dJVGY3qoR+nI VD8CHpb50jZE4UNx0O7QZTSUdJe71oRHIDzT/WfiKhokaqdtw31ewifp0qdi ERrCNt/tp98Mh2XY0R2sDTT4bh27/MsuDAIOU7IH9tCgM82rkPz0GebPDw6f VKbhYfnFY22JTzFi2vzeRpWGF8U3NkVVBaP82AepQA0aBnU2n9WVCYTLOqvN pAUN6Bw1/DXwAOf0dhr1WtMQ7HGn7PpNP5y4z/2o4yINL1+knvkn6Aup4Xc/ 6h1psPq24ua5a94QlLi5teYmhV8bhakp3MPfE8dNy2/TcHDBs7NvvnuiNZNV ku9Dg+S6iLBh8zsoYeb9znpIg+1p6Yd7d7vhg/hjmU+BNLR6+erOb3SBt5d8 cEI4DRoizx7JH7oBh4z5z29f0xAbb/I8/vp1mA41Tr1+S0Nz44ct929cw04d J6vnyTRUDch+nl17CRKeR0OCPtGw5w+r1GLPRfCmC1c9yqbhuN9yC9Xb5/Fz 8Nsf3wIajM4ffpMydhb9q3MU7pXQkGjCe+vqujOo1fI/515BwzfHH8K1+SbI 8jANc6mlYWixm7BfhgGi02RrnRppqBS4np/Jq48Axuzfq600vN72W77RQRuu ovX/Xeqi4a60y5IzvsdwXvPNBZt+GnLzNHR2nD6EE+7XXloxqL1ssPJ9UZoS 9qceqjdj0TAxPyHBI7sTUgMC3EZjNPw8Ej4SJSkJARHGHv2fNGiKp5kIJIhg Tj3TTmeKBq4bFQeT73ODdds3Un2Ohr+iU5ZFkV2qI0bb7WK46EhMOKRn8ShB 9ex3IZ4NC+g4rm6r1L/4p2r7w7lXkYvoyLwzq4cty6G95dte8SV0OImVMCMt 16OksL7xBR8dm9p+9fz3exsUjbIviSyn46sjTe3dl91I5rxZELKSjr+8B2K2 8qtg88MHr1cJ0jG9WeBYYd8RhG92VAqkzuErGGjLvqKBFYUmzctW0/H8liCb mX4CPoaH7R+uoWOZyFypWOcpzIxvW8QrQUfO4x5R5XQjOPgLRvmsp6PPguFX xjTD4KbZfTyb6PCQ/zwe7WqFJoO6K3+30uH5yr2Ku90Gx8czF9+RocPNevLO 9gRbFD54HT0tS4d3gHlfQ9xlJOQ7tP7aQYfL5n6V2FBHSBgYO1zfRcX7Spr4 Z+KEZ2NYwtlDxyuykJze5Yy7GwVURpTpiLf/JB0t64rfeTNttip0eC25onNA 4zYunx649k2Vjla3m8In3N1h6Jfxjn6UDjn5scmOEC/IsQ2XdejSkW7IdhCo 8EWugQ7xSI+Okq7rZ+R1HuBo0ZEbqqfp+Hbi0gsNuj/MAnf0xJlQe7NQ9iLT HQF4uHPpB2dqT/93b3TvaMZTCL/8ZylzkY7FVy1TfiQ9QzT3pGCvHR2FP3zk 9N6HILdl4PZRB2pvT7Evnc8KxZBzoZagGx1lgZbD7hIRcOpLn6+4Q4eF4zNE HXuFv8cS093u0nE0ZvssyzkSwqvDxMn7dFy9sCWt49sbHM27NpIaSMf+tSJD CkveIvrv5ke6sXREclKzC0sSIHdxjSp3Ah15kn8WN/u8R07Dyp+ZiXTckXQz LdBOREPUnKlEKh0+ykY6XANJ+Hu4fdtoHh3GHKu6Lzs+wszvYY1/Ix3ZDMmB tfHpEFr5fUn5HzqyNnqUtn/KR0vRoweaf+lw36Lwa/XuAjy7snVx4z86tK8X D2llFUCw1mxB90ISL1+69t4pLISgb8VfDrVX5Mxl25e2FWPVbMTPtdTeoQOO 5ufwUvAzj/Xe0CYRq5C9avfBSiwkXqVuofagVhfJ1KltTehWUdOgvSGhfzmk ZodxE1Lz2fSIGGovfynsf9OnCWbZBwUFE6g9PzQsZCutCZ9SaM5c6dReLlqz a+Z5Mywjt+zvqyKxX2zkkAv3V+S6fSgPo/bIvdIHOufb2hA4dfrMKWrPlN4b r1LB047zN+cmls+Q2CjUF3ST0sUrrutK+1J7rZDHH88g/3ZcsOM8vLF0APpl edP+yh0QNN59Um/DAJpDD5iHhXbCfk9B11LtAaiO8LpqKfSgpKktOVd3AI+2 vWdeMuyByNXvnrZ6A6gOKWjVd+8BEbdVqsJwAFJ8+kIuNT0QWh3s5HV2AAcv 9Bb/OduLghmbZVM3B/D1YvuhxT59WBXm2R/nOoD0woGKPQl9uLAr4pPBnQGc ITa3rq3tw0r7RuN0rwH4nlT/uHJlP873KsdefTwAMbWDXjdC+7GMWHFwMHoA luv4TU1CaDhrvm1VyLsBNGwsiXpNnctZU0cZh+MHMCgZeDOAOketdro9jPow gHjzV5H/UedSRgyjzSx7AFZDerLjB+lYojr/fmkexd8oMSpJm44z3WLuuQUU nxcOJvtM6eAVOrFZtJSKX3ozreIGHeY+uQ7NXwbQ9tbl5ut4OtI2fj3s1TCA Fo/EvZ3pdCwqGhPe0TwAJdFhkl5MR+rE5oKA9gEoygpZm7XTscD2Ca8GOYAP 0VodAzyU/lvwvnuSMQAztDfeW04iJaosJW5oAGcnfz8ZXU3CuHPq9AI2xW9w Rcc6ORIfNM9FF08O4GRo4c5f+iT2yG1SxcwAzls2CB43I1G8gt5DzA7AJvvn Wrtz1P789czqUi4GmnXy7oo5kTDNlsg6vICBFYMf1ePdSAyE95wqW8QA7cBZ UZ57lH48Yxr4mY8BRtjWD5uDSHgcEpNTW87A5NDyoaFQEou3dNSUr2Tg+ZzF Kleqz9ewDBZVCjMgqB0myZVIQtVJz716PQMOo5bLowkSVQYrxTU3MZDw+45X eTkJPaWGnJotDCxUCuzMqKH29TntX7UyDDxYoXHoZwuJ0X6+p9rbGeh5u639 EKVfnEtrFOrkGVgbfuuMKaVvHvipX67fxcABRXFDJqVnV11avOTEXga0bxfr W1B6NkK7Iq5BiYGNdvYmEcMktij4HD25nwFvNcX/YtiUnl11lGxUYeDD99lY Rw41R7+4PfXAoPSstceSn1T+2kokmg8zwH2kw8fuNwn1XM98fTUG1KNC/YKp OWuKUDVpOc6A+/a3J7wovWfq8XfilCYDKo8aEpUoPThgVRjyVZuBI9V5F7Ip vWh/5M5/BicY2K3RrDc3R+VXcn9jqx4DNsn6+5dSc+nBO3PF8DQD8UXqP3sp vHgkh6/dkIGCE081XSh9Glx3672RCQMjEv0CnRRek7r3eIcZAxdT0tb9o/Db p78ZxmcYuCNtdYhNYTnnjHudVgy82y58IorCWUZOG0zPMeCS0LhWjMKqyv8V ddlQ78fbehpR/qrWfjczs2UgYMPDk2aU3tWb/zjdfYkBCyL3/BaKbxf9apj5 FQacU08//0TFd+6z3J5eBwY0zILzF1LnzGjcaLPFdQYytnumSUxR9fJPutZ3 g8rPiWX6M1T+5i9fWm55i4F7F2ddIqj8PtCV+dDvSvlT/8nN9Z2q306mhtUd qr/eX6vbNkbVTzB+iObBQF9bU9bqEapeHVs2k94MfExedh4Mql75A4S1LwNm rTNMVxpVr8iYMwMPGLjEP7n8FtUfTdYbXjICqH43HqrOp/rJVK1f0SaIgSDH ia08DVR9pF63Dj6l8tmimclP9d/EqPiqoTDK38Oc+cvFJJ6/ZlZFvqTsuYkK Hc4lsftkpufpSOq5st2ORkr/Xk/X5ZTEMHClI2GVUCzF30Y8wSWWgS3qQjHV 1DykijAtFRIYWLreoWkvNS9jrl4Nr5IZ+FmQmKboSyJAVtfvVCoDMguXKtW6 k9jeu0Z1aToD8zOGvCLOJC4hI+VWDgNfZgJVm6ype2LRUIB+GZXv+9stepRJ +OSkqy2pYKB2qN1DegfV35c854qrGNQ5vdxdVpKEdZ3YFbl6BgyHwjkG1HnS 90xbm7eTAX6p9VsP9FL3nprYguJuBk7x735+kLon104O5jv3MZAVKVQ+WUqH qeld2YEBBsZsChyfUOdb24ZPS4vGGMjuNQnSuUKHc7NH6Y3vDJy9d/fJojN0 CN3XcpP9xUDXsQnvm9Reoj/EYL2YpuaxIPzBbXk66pNFq50WDKJe7oXBXmqP rVB295NZM4hMOqH16EM/bEY1VGlrB3HyFjuRfb8fC16LTIauH4THwGAJYd6P w1ypFxZIDuLPgQeb85b2o6iSVOtXGAR/Fecll1Ufsk6rL3iuNohFDkvo2zg9 8NfO9ZVQH4QTvdh4prQHFke3LYnTHERYak6Y3vMe8Oxetjz7BPX+z7CqF0o9 OCHYKNppMojV8tyjz1y7wWoykpW4OoiHovoCzwY7IX7ion5sKMXnglb0Z9s2 jB3r+CoXPgh7DSV1E7k2lBzUMMqKGIQJp37L/e+tuCgva14ZNYgbXDc/v3Zp RQb/uA0rcRAn+F4OTHp9hc6Xm65yxYPYVFV/usSrGZ4avlGZQ4PQfKFj7udU ixZLO4udw4OImfn+3muoBpI3tdckjw5iKDnVq9O0BrUxAiHvvg/CPTj9Wbxq NYRnX/s9+zMI2s/4nd+4KvE+Jfuq44pvSJMa+E/lUimaBFkH5BS/4efOM2Kq +qnY1KfV+c73G2JVvJvpa/KI/Uo+z9fsGsJTvnRf5119RPu5NYqv9wzhYf/z WCvfPuJG4MeOjUpD+P3Q+Of6zj4i+VunuIzKEPT75P+JePQT65/LxygeH8L6 o18Ua8ppBM+P9pTTZkMoKptV2rmVJL4kbat64j2EmN5AgcQQBmHXXmwn4DuE qbnzXbZ5DGIhjwFf6IMhPDHP/spFYxCqpnd1IwOGsLpu8R1i2yCRxvv1a1LY EAKDrtqfKxokntu406uShuC+/MCqjt5vhMX6xhnur0Mo8+EuMJ5hEivWOGUV tA1h0b+TRnISLKJUSOT6zc4hXAgVqPusyiKklpqzWH1DuJdpuFf5Povg/Bpq b2QNwSIoOmvH0mHCu2Y+4/X8EPwuL5buXTJC7CmPuWbMzcSXrRIH30qPEMxi te0CC5noE3A8teX4CKGT+eitz1ImPs8Oxxl4jxAiUaJP7YWZ2L1L1Nh2aoR4 76zgoCzLxCOhyIejX0cJs2vN237JMfFux6lqufFRYvll52/JO5hYszZebvMS NuFklW+xcS8TvO4jbdIH2MQBrePavIeYeGHzYzrkNZsYVxteXHqEiQqphiT7 LDYRjYCy28eYcFcN9fxdxyYW7m1RHtdiYqXEGymxWTbRsMFSps2QiSslh4tf nx4jvMS5BwNNmPhzgtny226M2C0SG6VhzgQ/9/ypPx5jRDjfiGjhWSbkJwi9 lQljxLmJm4ve2TMhe+1yvMnEGDFR+2TA8R4TZzXv/5T2Hid6l7XZzd1nwqdq fGT303GiTEeC88CPiaxDCzt+R40TwQ1Js28eM8F8ffjz88JxQralSrg+lMK+ ezPUf44Tq4RWvjIJZ+K90oGlk/PjxNRpo02DEVS89nP9xss4RHnboPxsFBOF bV/O7d3CISy7uNW3JTGRZL/J+fRJDqEmrlmfmcwEn6jbpZemHGK7efDpQ6kU P9mdH56e5xDTvevPGmcyMXTM/Un4LQ7Rv+7i0EA2E+vVfcbiPTlEhWXKFYc8 JlojW8Rs/TnEM/oBN99iJj6+8DOfC+cQrpvu/1tVyoT9+vj9zdEcwupcrW/k Zyq+EC9n4/ccQm7Q5FlGNRNRetohLtkcQnBrtBi+MDHfoKkhUMQhZi4w39TW M3Hr7MZp888copJ58wPZQvEP//VrQSOHSJYp+u9qGxOqKpZi1q0cIuTSwtzp Diby73uwHLo4xO0kbVWfbiasamROy/dziLOjz8pX9jHxrUVNI3KAQxyX69Z6 RaPqvbI8t2CIQ8hf3dQsNcDE6sb4sMcjHEL4o51x+iATMu6zrcvGOcSf8dS+ g0yqn6v7bVV+cAj6jqnzNcNMnO6/o7buN4eoclQdMWAzoejHb/1xkkN8/OTr SB9nwvJkVyZnmkM8/1k3af+DCbdU5X3kHw5xZ7ewx9QvJpQ3Ph/0nuMQ55zN F9yfZMJrn2Vm618OoZH19uGKGSaCSyXetc9ziB2TwysjZpmQrj6f4v+PQ4gq /Re2dZ6JkMT2phEKz7m4SnziYiFNQob///8PYOQSb1UWsMBSFLciKFw7s3hb 9SIW1ly9W/vf//9PsP9E6uklLHgE79UzoOy/uBO6l8bHgkvVjl9SlP+7hb0F l5ezcMb7Sk7iLIew+bvlyORKFnZf+RPTO8MhtFTtq+8JsmBuPJVLTHGI/zzT TywXYWGfVPCC0xMcQqxkpjV8NQs1qVyPwn5yiHmuw+aS4iwoRYcYPuJwiMHD /mSqBAt6hm8dFdgc4ot3o+2BDSwI5Dwf8mZxiPCFls6nJFlorFkmepBOff/8 6r3NUiw0E3er8nsoPp+bJk5uY0FndPkmdjuH2Ol91EVXgYWoH8r8l+s4RBg5 p1S3k4XLqzaVZFdS+TmUPa21m4USh9yzOSUcovqfzG2NfSyEv1HMac3gEApW A/ur9rOQT5N+8SOZqlfxq9ljB1k4F9eXUxZH9Y/HCo+jR1iYHNEQ9w7jEFN/ fnmq6rCwXqRth6szh7AwSzlUdIIFY7f+HmV7DlGWd5FbRZ+Fx+MLo9KsOUSg a5e3shELC2//ZRbpcgipyWLfPWdZsFReJm2+mUMEGLoezzjHQvCpIukaUQ7x M/M/3l0XWBBOaTo1xschim/E+u+4zMIPxpvPJtT8G/14+FjWmQX+t4k+JUXj RKHeUZ3EWyx0TL49Ppg6TmxOm+OXcWMh8sdObyJmnBh3uBa49S4LEro7Nrz2 GSd82QZPN/qzULGwZfef4+NEJnPDC9FIFp4t7emwKx4jxNW7jEPfsBCv86Ri bTJ1/sU/ExOOYWHpvUW3H74cI3QuLIoQiGfhy3jotrAbY8TgwEgkfxoLIq/z b9yRHCOE+rPe8pSzUFiptTDVjU0E8nt45FSysHVsicthazbBd0DN5EoNCzY5 CrYPNNgET3jL8vYGFnxLBPbvEGUTP/U5roldLKT6/j00kzJKNFXInNTjsJD3 8KJEY+MIEZDyava1+DB2/bfm6B0ai1jSe6791LphHCj2b9AoZhE+fLKfeDcO o/GJcWJHJIu4Y5t78frWYWi+UdE4YMoiLm9qa1bbOYy8JLn9Mo1MQiN0xfvR Y8P4qn9Znj9tiFjkcc9A+fowLLvUvxKag0TmD/YMcWMYdxN/TNpJDhI2F02i jt8axum4l6Ej8wyi/OSOkdN3huH9bbO8WwaD8Nnc5+ngOwyNp/dUm8Wp+7p6 34d3L4fhGcQj0j1AEjxC37lXlA3j2sjx5S9y+gmuRMvUAcEReKfknVsk0UpU sjscokRG8FdaNVKr+CsRsFNfwUJsBM72S856nf1KrM49mtK2bgQ77llwymJb CIUqmQ/VMiMQz7i2qFaumbD49jP+o+oIPuX+uiHhWkfkbXrw5vblEbhMqxm/ KS0hnCJSnwiWjeC9juA23jcJyJmLeFBWPoLM9aylK7WTMGfpd8+pagTt3GKr hSeT8WDLmZstdSPQ/LXOfGbzJ0Qm85151jECZbmWLN6L2agoviAnODaCTVtW N4aalUCMsfaLgNgotn8q8n8oX4szx3grSsVHUdDm/zG1vBZvE34WX183CvWi zFFh8y+Qu1KT3rx5FBGsnw9CfetweOJWxFP5UdhevbBWtbkBl3lbLgkcHcV/ J4uYHdHNKNruv0TAYRRVRjf9/hW1QbF1df0zx1HsCLv+r3qqDWnuCU+Fb4zi ZeNS7m3/teNtfaW4mOsoaDbFj5PetsP/2iL5Dd6jSG/2eh3n1YFTGd768mGj oEsdV10l04Uv5oKiqeGjCNr1KobXvAtqC99273w1it2hiXyBT7qgZFh6fk/0 KAQ8JbWO/+iCxNS/mweSKPtKtramGd1g7veI0CweRfD5ssM5m3pxlsFv9aVk FILeL+9d1+1F9+PILbqfR/HpGYs3y7UXdb0FyXrVo+AreJ3TXt+L9Lt/io1b RqG0bX2uu1Mf3MtcGBeGRvHVsPbnmrh+TFzmfc9kjaJu4FyZRk0/HIReXLk0 Ooq/6qFjc+x+WNtkT1z5PoqhrfKvf++i4fjiCV7nP6OYj63JlsijQUDLSc57 BRvbtq8xEDOmI7p05bL9AmyIygtU37tIx07llOEfQmxMZmwaj7lJxwkZVrz1 GjYE9PykF4fQ8Wix5abDkmzkuzFcz9TSsebu7L9pKTZmkvnf3Omg4/1EeH/a NjZkHv9V0xuko2rw66uNO9jw8P4gtu4vHQs/a4py7Wdj5ejnzce2kwjZz/yd o8KG8rPY8NWKJDan+3y9BjY+V3xOjz5E4lAMEUxTY8Pbxv5vuwGJRrEz116o s/H66vwxH0sSlsF/dE9qscHSGTzHsiXh4bl3GXGSjcrntcZtbiT4p1qGb51i w6+W75SlN4lIB8dqBUM2HutJXHjziET+mQ++b8zYaA2SllGLIDF5YBPX3Qts 7IssTJTJJuGbUdy/146NjyNew1cKSQhvtygau8wG7/5C3ktllN4Vf3H7jCMb er92mT2sJ1H2dI+pyA02gv9rb0ih9PSppS1K9TfZeORY/PZRBwnHaf4JlTts 3FUvm7xKJ/HvWtLX3x5smOVtKnUeJBHIVE9P9mIjgk/Hcw+LxDqrb8E29yk+ KY6mKaOUvm/3vibhx8buiQlX2jiJAyc2nmj1ZyNa3HXJlx8kaiuK5AIes3FY sXq3428SZgfNl6kFUvnZNyrdOEliOHN6eDaYjfFeMSHWNAlXubDqjBAq/mf5 kgV/SCyJ3Z1gH8aGit3lJxpzJF6sbfbd8pINq+Efd4P/kpAKcbDpecWG618N uZB5Ell8/EdD3rBRX/S8Ru8fCTXvxE3aMWwoqEsF1FD468xxrgWxbNzwc0v6 S+Fz1wf78+PZePdvt8UYhX+w7hU5JbJRE7SlO5zCXmc3RMoms0HfdtCSi8Kr OgtvD3yk+iXw1RZJyl/USTPTiE9UP855XFxI8VGomlI6lclGGf24TcwsiWLV UFG+HDbaPW6bz86Q0M3eNVGax8Z8QNFjQSreXvmmr26FbKzq/7qXOUHZGxXw WECwcSRpfjz2F8Uv8bTUk1Iqvwl+EtuofErZhjaKlrOhpVk8cYPK97Bkh2t0 JRvEcH267//rMSC2WbaGjUv56QGWVL0co82+ZHxh41T2waJ5qp6Ta/vXVTWx 0RUWvzysj+q3rg1Vel/ZeJCAuCddVL++sHbsbqPsL/7lrdtGYqHQt7Kxbjaa 1i5cKl1HoqpJ6opLH/VcO2jH4SoSjwLtRLjpbJTbPwmXpPpPgI9tK/yNDYON 3xU1cki0VskLvGGysTGk8bv/JxLhvtfypUfY2KMrMhnygcR67l/8BzhsBHiq /14aRUJueuaT9QwVT8L0eY/7JDhZB8xHZ9lQoumJibmTSL/hsfDmPBvNH4NO eDqTUOZwGfsvGINyk8DlTBsSx4d45z4uH0ONVnR86RESS2M14/atGgN/sdfH amUSddaPT5QJjmHfGqfXb3aSON23IqZt9RimD59zzF1H4myryPG5TWPYA53G 5Ak67pRtCdZUHIPsf9dLyEg6VL0uKH/dNwbm8yGh+WA6eFQTBiwOjGG2Ivvl uA8d/nmyex0PjcFmzZI43St0hKX91x2mNYZ3LvY5y5XpSHsDyUHLMZBBJaKN oTT8uv2L19p6DAMPjWRc3GhQNE4Y7Ts/BvtXOw3bLWgoWLkyo8NuDJtbFIYL N9NQ6dV/+IvTGNRiHR7gQz96znlYpfuNoTHhQENpah8WSxdEeH0cwxTtSpBE QA/OpCoKrJun7Dv7n1Yl2pFtNr2iiWsckedDxu1C2rFicT7//QXjkA3edP22 bTtKLA4uGV4yDnWfAR+jle3YzKf2L1NoHI/F9U4LWLZhyEZ/TGfbOITKh8d8 pr/CQfxKjbvBOK69dHGflmlGZYV81Q7jcQzGKDqtmWvChuuc8gHTcYhEZbYe bWxCU5VTiYbVOJ7tHV+Td7MJu2665QhfHsexz9F7/fwaMdXoF5fsOY7aQjc+ j8918PKNudebNA6B5JUl4xersNyFV8s6ZRxiUL4jvqYKEXZXBYdSx5FrRZCB XyqRoa38jpM5DnH49xr/V4khgeZyHmIcX3fkG4VyVUD7DdeSbV/HYXXz88cV qWXoDLrYlNI2jgB1wyu3L5bB5l5d+K7OcZxr2Zx0fH0Z7tqEb1PpG0ew3m3D xUGlSJPdqX2SOY7XjE0FmjdLIJpjFXhzdhyaESEd0smFePe+wujP33G0Xpza YS5TiJ0R2zd4cnFg6LRu6nZcATQ9plL9F3EQkRnJ++htPtyPBjW/WslBxWzO U7n3uRhoLBYu28LB4a9TtnGMTFwrlew7LsWBvmHfhaprmZhLfxT3RYaDM6cO npqby4BImJFimzwHY/EbuhPEM6BhMW7MUuLg/dFlcUfOf0IKa92rFTocEE51 AblGydBLfOpRc4ID7ytZaivvf8DPS4vO+uhzUDcuUa2cnoR9o2zJP0Yc9GQE Cqxbk4iysYKP36w5aDjmKvZ6aTxsPu54Gm3DofrkF5+Qbhx4r727YW7LQfF8 Z51XSCx0vj/a13yFgwtWTS4G296h/adpWaELB6UhFpG6btFwzaiPdbnNQbPT livMxCisdT78YJcHB2dVoh6cs32DsxMyOu+9OZgxqbrOM/EKI1NTbSFPOJBJ Xz/5wfwFAnLtc08Ec7BUuVFz97Ew7HCjRSwN4eDV3ZLPG/aGwvlPpZVnOAfW Ar6PD8mE4N9c6PDldxyYVA18fpAbiLdFS+u2xnOwelloxY5fAVC76/GR/p7y V7Nianb/Yzz6Z3PD6CMHJwiegzI/H0CupNNQ4BMHs+utVV5Z+6HRS2dfXQYH Xuxfh0z6fSDMs+fv4TwO3NqDGS3/7iG7LIE2V8BBffDAophYL5jeX1uWU8xB 1QU9+8yUu3izcMED+XIONhaZDhlVueFQxa1LrEoOEngUd79zdwHDd0T7XQ0H UhYKf//q3IQMb8uqNY0cKPxQz1uF66itOvbrazMHd5Zv+0OUOuCqf15bYCsH W19XlnYesMcqTflczQ4O6Jlxy7zYtkhfGhOxsJuDwH3jtOqvNjCoFfYgejm4 MmTEX/HDGlOP/K1u0zjIaHyjzvfEEhHac4f3DnBw6c3ZuZ2xplDhd5T8PsiB /7KBa+LbDNFfx1j8gcmBtH7Vefpafdx7Yjx8YYSDaq+eo3tmtCB54suXjWMc yH+cnMoNU0PlCnzs4XAwMcbaztyoikuN6cGUDse5FK5C3vo94A+WuqE/wcHJ qhUugjay+KgXYcg/zcG6gi2eZw6tg77Ain1VfzjovJCXF7V/KR4t4lnbS+GN 44SZtdMSlM9M/P1OYbkglrRWCi8UB/o+i89y4PsvQeup3GJKh6ScdKBw7Q35 +gm9BTidELPrPoUzNqeNfI/hQcCrUJFwCl/OnD4gNMmN+fsePaUUzk+z9KhP 4MKAga6tyBwHlqtNpP47N6e6VvOwliyFu0j9+gjFWVWDg3vlQeHweP7hUwJ/ VCu3rvtlR+Fvp8p8PnZNqX6YZN8tpDD3X82bQtm/VAdH6NbNFBbKihn5XvhT dT2tVW2Iwu+29dEkan+oBlcV8q36y4GwL/N1yThH1Tk8IOw8ha3eTJTIHhhW TQnwcnOlcNrWFez6FKbq/yq401eGAzAAwL4YTRGplZQ1k3OWWsn1zlVytAxJ zORurg8zV03JQmuO5NiHKc3E5BxliEyOcjSkaIa2piXShlly/bw+Pv/EY+0Q 8frQUeVeoZ4MKxQIeDQtemNWaarkWmCwONv1BF1GdvDbnWY44qY+mNDzBo0z Sm2ChNiIBfKvjR3e2Pp6X3YDzZHUwQA0nyPTf3tfwxLNV8RCx9mrHznXV0Dz +I7ho/siSM/K1QsoImz+jWjJV7Rh4ugcht8sRA96+iOEumk7BdLN8b4G3WKV 6Enxh8A+21YfoGlhDoqRcQCteysyI/p+I9+dnrMLmrXpBju6M6heZVbr4HFO wXUlbGyRps4QXLEJgcoBlh/aorzTNxm1wBuRUJjofWoQY167AiPSls8U9Ki4 9E3xsgj69trbAjTZ0yhcSpgBN2GJrh7d691llueqILEqV9WJvnvJ6J+sGoO2 wrRuOXqLbc/bXh+CZU6cYA7NcuhSXZKk8JTMzNpBZzJ1hKJWDPToQOYlukb4 MzWeJgB+OMXnCS12Xhyb8tJBHuDxTqAdEnrF/8/xB11aWXI= "]]}}, AspectRatio->0.25, Axes->True, AxesOrigin->{0, 0}, PlotRange->{{0, 1}, {-0.9999987821124273, 0.562499578465048}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{3.3983128766101136`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"RotateRight", "[", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"Fourier", "[", "h", "]"}], "]"}], "/", RowBox[{"Sqrt", "[", "17", "]"}]}], ",", " ", "8"}], "]"}], ",", " ", RowBox[{"Filling", " ", "->", " ", "Axis"}], ",", " ", RowBox[{"AspectRatio", " ", "->", " ", ".25"}]}], "]"}]], "Input", CellChangeTimes->{{3.3977985607316446`*^9, 3.3977985791080685`*^9}, { 3.3977986284690466`*^9, 3.3977986329755263`*^9}, {3.397798698639947*^9, 3.397798727851952*^9}, {3.397798762752136*^9, 3.3977987949985037`*^9}, { 3.39779893810428*^9, 3.39779896764676*^9}, 3.3977989981105647`*^9, { 3.39779911310592*^9, 3.3977991133062077`*^9}, 3.3977996232795134`*^9, { 3.397799728050166*^9, 3.3977997319457684`*^9}, 3.398312543771515*^9}], Cell[BoxData[ GraphicsBox[ GraphicsComplexBox[{{1., 2.215329970248897*^-17}, {2., 1.9512250972950063`*^-17}, {3., 1.466861762774506*^-18}, {4., 1.8276380077438552`*^-17}, {5., 0.25}, {6., 5.219317370046027*^-18}, {7., 0.25}, {8., 1.0029667302970686`*^-17}, {9., 3.2653618371328133`*^-18}, { 10., 1.0029667302970686`*^-17}, {11., 0.25}, {12., 5.219317370046027*^-18}, {13., 0.25}, {14., 1.8276380077438552`*^-17}, { 15., 1.466861762774506*^-18}, {16., 1.9512250972950063`*^-17}, {17., 2.215329970248897*^-17}, {1., 0.}, {2., 0.}, {3., 0.}, {4., 0.}, {5., 0.}, {6., 0.}, {7., 0.}, {8., 0.}, {9., 0.}, {10., 0.}, {11., 0.}, {12., 0.}, {13., 0.}, {14., 0.}, {15., 0.}, {16., 0.}, {17., 0.}, {1., 2.215329970248897*^-17}, {2., 1.9512250972950063`*^-17}, {3., 1.466861762774506*^-18}, {4., 1.8276380077438552`*^-17}, {5., 0.25}, {6., 5.219317370046027*^-18}, {7., 0.25}, {8., 1.0029667302970686`*^-17}, {9., 3.2653618371328133`*^-18}, {10., 1.0029667302970686`*^-17}, {11., 0.25}, { 12., 5.219317370046027*^-18}, {13., 0.25}, {14., 1.8276380077438552`*^-17}, {15., 1.466861762774506*^-18}, {16., 1.9512250972950063`*^-17}, {17., 2.215329970248897*^-17}}, {{{}, {}, {}, {}, {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{18, 1}], LineBox[{19, 2}], LineBox[{20, 3}], LineBox[{21, 4}], LineBox[{22, 5}], LineBox[{23, 6}], LineBox[{24, 7}], LineBox[{25, 8}], LineBox[{26, 9}], LineBox[{27, 10}], LineBox[{28, 11}], LineBox[{29, 12}], LineBox[{30, 13}], LineBox[{31, 14}], LineBox[{32, 15}], LineBox[{33, 16}], LineBox[{34, 17}]}}, {{}, {Hue[0.67, 0.6, 0.6], PointBox[{35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51}]}, {}}}], AspectRatio->0.25, Axes->True, AxesOrigin->{0, 0}, PlotRange->{{0., 17.}, {0., 0.25}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{3.398312892893528*^9, 3.3983129693134146`*^9}] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{833, 750}, WindowMargins->{{336, Automatic}, {Automatic, 91}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, FrontEndVersion->"6.0 for Microsoft Windows (32-bit) (April 20, 2007)", StyleDefinitions->FrontEnd`FileName[{"Report"}, "StandardReport.nb", CharacterEncoding -> "WindowsANSI"] ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[590, 23, 154, 2, 81, "Title"], Cell[747, 27, 125, 2, 28, "Subsubtitle"], Cell[875, 31, 569, 11, 65, "Text"], Cell[1447, 44, 594, 16, 47, "Text"], Cell[2044, 62, 1308, 31, 61, "Input"], Cell[3355, 95, 305, 10, 29, "Text"], Cell[3663, 107, 902, 24, 61, "Input"], Cell[4568, 133, 234, 4, 29, "Text"], Cell[CellGroupData[{ Cell[4827, 141, 290, 6, 61, "Input"], Cell[5120, 149, 1155, 22, 39, "Output"], Cell[6278, 173, 1160, 23, 39, "Output"] }, Open ]], Cell[7453, 199, 599, 9, 29, "Text"], Cell[8055, 210, 958, 22, 47, "Text"], Cell[9016, 234, 267, 10, 29, "Text"], Cell[9286, 246, 216, 5, 40, "Input"], Cell[9505, 253, 330, 10, 29, "Text"], Cell[CellGroupData[{ Cell[9860, 267, 174, 4, 40, "Input"], Cell[10037, 273, 1135, 22, 39, "Output"] }, Open ]], Cell[11187, 298, 403, 8, 47, "Text"], Cell[CellGroupData[{ Cell[11615, 310, 450, 11, 40, "Input"], Cell[12068, 323, 496, 10, 39, "Output"] }, Open ]], Cell[12579, 336, 384, 9, 47, "Text"], Cell[CellGroupData[{ Cell[12988, 349, 121, 1, 73, "Section"], Cell[13112, 352, 186, 2, 29, "Text"], Cell[CellGroupData[{ Cell[13323, 358, 632, 12, 40, "Input"], Cell[13958, 372, 9195, 157, 119, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[23190, 534, 580, 11, 31, "Input"], Cell[23773, 547, 19086, 319, 110, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[42896, 871, 598, 13, 31, "Input"], Cell[43497, 886, 22618, 377, 107, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[66152, 1268, 842, 16, 31, "Input"], Cell[66997, 1286, 2023, 37, 120, "Output"] }, Open ]] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)